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Section 13: Optical properties of solids 
 
Optical methods are very useful for the quantitative determination of the electronic band structure 
of solids. Experiments on optical reflectivity, transmission and refraction provide the way to 
determine the dielectric constant of the solid, which is related to the band structure. The dielectric 
constant is related to the optical conductivity. The term “optical conductivity”  means the electrical 
conductivity in the presence of an alternating electric field. The term “optical”  here covers the entire 
frequency range, and is not restricted only to the visible region of the spectrum. In order to derive 
the relation between the dielectric constant and the optical conductivity, we assume that electric 
field is oscillating with angular frequency ω : 

( ) ( ) i tt e ωω −=E E . (1) 

This wave propagates through the medium with conductivity ( )σ ω  and the dielectric constant 

( )Lε ω , both being the function of ω. Index L for the dielectric constant here reflects the fact that 

this is the dielectric constant of the lattice and does not include the conduction electrons. This 
implies the polarization of the medium occurs only due to the bound charges (polarization due to 
ions). The electric current and the electrical displacement are related to the electric field by 

( ) ( ) ( )ω σ ω ω=j E , (2) 

( ) ( ) ( )Lω ε ω ω=D E . (3) 

In general the conductivity and the dielectric function are tensors. Here we assume for simplicity 
that the medium is isotropic, so that ( )σ ω  and ( )Lε ω  are scalars, and therefore D and j are parallel 

to E. 

Now let me show that the dielectric constant and conductivity enter into a determination of the 
optical properties of a solid only in the combination. This can be seen from the Maxwell equation  
(CGS units) 

1 4

c t c

π∂∇× = +
∂
D

H j . (4) 

The first term on the right hand side of this equation corresponds to the displacement current 
associated with the polarization of the ion cores. The second term which is proportional to j is the 
convective current of the conduction electrons. Using Eq.(1) this formula can be rewritten in the 
following form: 

1 4 1 4 1
L L

i

c t c c t c t
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ω

∂ ∂ ∂� �∇× = + = + =� �∂ ∂ ∂� �

E E E
H E , (5) 

where ε is a complex dielectric function, 

4
L

iπ σε ε
ω

= + . (6) 

In this representation the conduction electrons are considered as a part of the dielectric medium. 
This consideration is plausible because in the presence of alternating electric field the conduction 
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electrons oscillate around their equilibrium positions without net transnational motion.  This is 
different from the DC conductivity when ( )σ ω  and ( )Lε ω  describe distinguishable physical 

processes, where ( )σ ω  describes the "free charges" (those that can move freely over arbitrary 

distances in response to the DC field) and ( )Lε ω describes the "bound charges" (those that are 

bound to equilibrium positions). 

The dielectric constant is directly related to the optical properties. The complex index of refraction 
of the medium N is defined as 

N n ikε= = + , (7) 

where n is the usual refractive index and k is the extinction coefficient. In optical experiments, one 
does not usually measure n and k directly. The measurable quantities are the reflectivity R and the 
absorption coefficient α. It can be shown (see textbooks on electromagnetism) that these quantities 
are related to n and k  by the expressions, 

( )
( )

22 2

2 2

11

1 1

n kN
R

N n k

− +−= =
+ + +

, (8) 

2
k

c

ωα = . (9) 

Note that Eq.(8) gives the reflectivity at normal incidence. In general the formula becomes more 
complicated.   

To determine n and k (and hence ( )2
n ikε = + ) from the reflectivity (8), more information is 

required. Two approaches are followed: 

1.  One can exploit the fact that the real and imaginary part of the dielectric function are related by 
the Kramers-Kronig relations. These equations, plus a knowledge of R at all frequencies, permits 
one, in principle, to find the separate values of n and k. In practice the numerical analysis can be 
quite complicated, and the method has the disadvantage of requiring measurements to be made at 
enough frequencies to give reliable extrapolations to the entire frequency range. 

2.   One can use the generalization of (8) to non-normal angles of incidence. One then obtains a 
second expression for the reflectivity at a different angle of incidence, involving n, k, and the 
polarization of the incident radiation. By comparing this expression with the measured reflectivity, 
one obtains a second equation involving n and k, and the two can then be extracted. 

Optical properties of free electrons 

We use the equation of motion for the momentum we derived within the free electron model earlier 
in the presence of scattering: 

d
e

dt τ
= − −p p

E . (10) 

We are looking for the steady-state solution in the form 
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( ) ( ) i tt e ωω −=p p . (11) 

Substituting this equation into (10) yields the solution: 

( )
( ) ( )i e

ωω ω ω
τ

− = − − p
p E . (12) 

The current density /en m= −j p , we find 

2( ) ( )
( )

1

ne ne

m m i

ω τ ωω
ωτ

= =
−

p E
j . (13) 

The frequency dependent conductivity is therefore given by 

0( )
1 i

σσ ω
ωτ

=
−

, (14) 

where 
2

0

ne

m

τσ =  is the Drude dc conductivity. The conductivity is now a complex quantity: 

0 0
2 2 2 2

Re ; Im
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σ σ ωτσ σ
ω τ ω τ

= =
+ +

, (15) 

The real part represents the in-phase current which produces the resistive joule heating, while the 
imaginary part represents the π/2 out-of-phase inductive current. An examination of Reσ and Imσ 
as functions of the frequency shows that in the low-frequency region, 1ωτ � , Imσ << Reσ.  That 
is, the electrons exhibit an essentially resistive character. Since τ ~ 10-14s, this spans the entire 
familiar frequency range up to the far infrared. In the high-frequency region, 1ωτ � , however, 
which corresponds to the visible and ultraviolet regimes, Reσ << Imσ  and the electrons display an 
essentially inductive character. No energy is absorbed from the field in this range, and no joule heat 
appears. 

The dielectric function is then given by   

( )
0 0
2 2 2 2

4 4

1 1
L

iπσ τ π σε ε
ω τ ω ω τ

� �= − +� �+ +� �
. (16) 

This equation and equations (7), (8), (9) determine the optical properties of a free electron gas. We 
consider now two  frequency regions. 
a) The low-frequency region 1ωτ � . In this frequency range we can neglect the real part of the 
dielectric constant and find that  

04
i

πσε
ω

≈ . (17) 

Using Eq (7) we obtain, 

02Im

2
n k

πσε
ω

≈ = = . (18) 
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The inverse of the absorption coefficient 2/ /c kδ α ω= =  is known as the skin depth. The intensity 
/

0
xI I e δ−= , and hence δ , is a measure of the distance of penetration of the optical beam into the 

medium before the beam is dissipated. We can now evaluate the skin depth 

02

cδ
πσ ω

= . (19) 

In practice, δ has a very small value (for Cu at ω ~107 s-1, δ=100µm), indicating that an optical 
beam incident on a metallic specimen penetrates only a short distance below the surface. 

b) The high-frequency region 1ωτ � .  This region covers the visible and ultraviolet ranges.  
Equation (16) shows that the dielectric constant is real  

22
0

2 2 2

4 4
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L L L

ne

m

ωπσ πε ε ε ε
ω τ ω ω

� �
= − = − = −� �� �

� �
, (20) 

where 

2
2 4
p

L

ne

m

πω
ε

= . (21) 

The frequency ωp is known as the plasma frequency.  

We can see from Eq.(20) that the high-frequency region can now be divided into two subregions: In 
the subregion ω  < ωp, ε < 0, and consequently, from (7), n = 0. In view of (8), this leads to R = 1. 
That is, the metal exhibits perfect reflectivity. In the higher subregion ω  > ωp ,and ε > 0, and 
hence, by similar reasoning, k = 0. In this range, therefore, α = 0, 0 < R < 1, and the metallic 
medium acts like a nonabsorbing transparent dielectric, e.g., glass. 

 

 

 

 

 

 

 

Fig. 1  The plasma reflection edge. 

Figure 4.12 illustrates the dependence of reflectivity on frequency, exhibiting the dramatic 
discontinuous drop in R at ω  = ωp, which has come to be known as the plasma reflection edge. The 
frequency ωp  as seen from (21) is proportional to the electron density n. In metals, the densities are 
such that ωp falls into the high visible or ultraviolet range (Table 1). 
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Table 1: Reflection Edges (Plasma Frequencies) and Corresponding Wavelengths for Some Metals 

 Li Na K Rb 
ωp (l0

16s-1) 1.22 0.89 0.593 0.55 
λp (Å) 1550 2100 3150 3400 

 
The nature of this charge density wave, known as a plasma oscillation, can be understood in terms 
of a very simple model. Imagine displacing the entire electron gas, as a whole, through a distance u 
with respect to the fixed positive background of the ions (Figure 2). The resulting surface charge 
gives rise to an electric field of magnitude E=4πσ, where σ=neu  is the charge per unit area  at 
either end of the slab.  This field tends to restore the electron distribution to equilibrium.  

 

 

 

 

 

 

Fig. 2 Simple model of a plasma oscillation. 
  

The equation of motion of the electron gas as a whole is  

2
2

2
4 4

d u
Nm Ne neu ne Nu

dt
π π= − = −  (22) 

which lead to oscillation at the plasma frequency 
2

2 4
p

ne

m

πω = . 

Optical properties of the monovalent metals   

Now we summarize the results. Within the free electron theory a reflectivity of the specific metal 
depends only on the plasma frequency and the relaxation time. Incident radiation simply accelerates 
free electrons, and if there were no collisions the electrons would radiate back all the acquired 
energy in the form of transmitted and reflected radiation. Since there is no transmission below the 
plasma frequency, all radiation would be perfectly reflected in the absence of collisions. Above the 
plasma frequency, transmission is possible, and the reflectivity declines. 

At high frequencies ( 1ωτ �  - optical and ultra violet range) the only effect of collisions is to round 
the sharp transition from perfect to partial reflection. Because of collisions some of the energy 
acquired by the electrons from the incident radiation is degraded into thermal energy, thereby 
diminishing the amount of reflected energy both above and below the plasma frequency. Because 
collisions have this effect at all frequencies, they introduce no striking frequency-dependent 
structure into the reflectivity. This is contrary to what we would expect for real metals, which have 

neuσ = +  

neuσ = −  

4E neuπ=      
u 



Physics 927 
E.Y.Tsymbal  

 6 

different colors. The color of a metal is determined by the frequency dependence of its reflectivity: 
Some frequencies are reflected more strongly than others. The very different colors of copper, gold, 
and aluminum indicate that this frequency dependence can vary strikingly from one metal to 
another. This free electron reflectivity lacks the structure necessary to account for the characteristic 
striking variations from one metal to another.  

At low frequencies 1ωτ � , according to the Drude theory, the real part of the optical conductivity 
and consequently the imaginary part of the dielectric function has a peak. This peak is known as 
Drude peak. At zero frequency we arrive at the result for the dc conductivity.  The width of the peak 
is equal to the inverse relaxation time of electrons. The Drude peak near zero frequency is indeed 
observed for all metals. Fig.3 shows an example for the optical conductivity deduced from reflec-
tivity measurements in three alkali metals. We see the appearance of the peak near a zero frequency. 
However, at higher frequencies the spectrum deviates significantly from the prediction of the Drude 
theory, according to which the optical conductivity should drop down to zero as 1/ω2.  

The origin of this difference comes from the fact that the Drude theory does not take into account 
interband transitions.  
 

 
Fig.3. Reσ(ω), deduced from reflectivity measurements in three alkali 
metals. The interband threshold is evident, and occurs quite close to 
0.64EF, where EF is the free electron Fermi energy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Free electron determination of the threshold energy for 
interband absorption in the alkali metals. Numerically, 0.64 FEω =� . 
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Unlike free electrons, for Bloch electrons a strongly frequency-dependent mechanism for absorbing 
incident energy is possible. This can be understood by regarding the incident radiation as a beam of 
photons of energy ω�  and momentum q� . A photon may lose energy by exciting an electron from 
a level with energy E to one with energy E E ω′ = + � . In the free electron case momentum 
conservation imposes the additional constraint ′ = +p p q� , which proves impossible to satisfy, 
thereby prohibiting this type of energy loss. In the presence of a periodic potential, however, the 
translational symmetry of free space is broken, and momentum conservation does not hold. 
Nevertheless, a weaker conservation law is still in force because of the remaining translational 
symmetry of the periodic potential. This restricts the change in electron wave vector in a following 
manner : 

′ = + +k k q G , (23) 

where G is a vector of the reciprocal lattice. Equation (23) is a special case of "crystal momentum 
conservation," which has been already discussed before.   

Since a photon of visible light has a wavelength of order 5000 Å, the photon wave vector q is 
typically of order 105 cm-1. Typical Brillouin zone dimensions, on the other hand, are of order kF ~ 
108 cm-1. Thus the term q in (23) can shift the wave vector k by only a fraction of a percent of the 
dimensions of the Brillouin zone. Because two levels whose wave vectors differ by a reciprocal 
lattice vector are, in fact, belong to two different bands in the reduced zone scheme, the shift by G 
can be ignored altogether, which implies that the wave vector of a Bloch electron is essentially 
unchanged when it absorbs a photon. 

For the electron's energy to change by ω� , typically a few electron volts, the electron must move 
from one band to another without appreciable change in wave vector. Such processes are known as 
interband transitions. They can occur between the two electronic states for which the energy is 
conserved so that ( ) ( )n nE E ω′ = +k k �  for some k and for two bands n and n′ . ( )nE k  must lie 

below the Fermi level so that such an electron is available for excitation.  ( )nE ′ k  must be above the 

Fermi level so that the final electronic level is not made unavailable by the Pauli principle. This 
critical energy or frequency is called the interband threshold. 

The interband threshold may be due either to the excitation of electrons from the conduction band 
(highest band containing some electrons) into higher unoccupied levels, or to the excitation of 
electrons from filled bands into unoccupied levels in the conduction band (lowest band containing 
some unoccupied levels). 

In the alkali metals the filled bands lie far below the conduction band, and the excitation of 
conduction band electrons to higher levels gives the interband threshold. Since the Fermi surface in 
the alkali metals is so close to a free electron sphere, the bands above the conduction band are also 
quite close to free electron bands, especially for values of k within the Fermi "sphere," which does 
not reach all the way to the zone faces. A free electron estimate of the threshold energy ω�  follows 
from observing that the occupied conduction band levels with energies closest to the next highest 
free electron levels at the same k occur at points on the Fermi sphere nearest to a Bragg plane; i.e., 
at points (Figure 4) where the Fermi sphere meets the lines 

�
N. As a result, the interband threshold 

is at 0.64 FEω =� .  
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Figure 3 shows Reσ(ω), as deduced from the measured reflectivities of sodium, potassium, and 
rubidium. At lower frequencies the sharp decrease with increasing frequency characteristic of the 
free electron model is observed. In the neighborhood of 0.64EF, however, there is a noticeable rise 
in Reσ(ω), a striking confirmation of the nearly free electron estimate of the interband threshold. 

The situation is quite different in the noble metals, due to the d-bands. Figure 5 shows the computed 
band structure of Cu, including the lowest-lying completely empty bands. The threshold for exciting 
an electron up from the conduction band occurs at point B (which is where the Fermi surface "neck" 
meets the hexagonal zone face (Figure 5) with an energy proportional to the length of the upper 
vertical arrow - about 4 eV. However, d-band electrons can be excited into unoccupied conduction 
band levels with considerably less energy than this. Such a transition occurs at the same point B, 
with an energy difference proportional to the length of the lower vertical arrow - about 2 eV. 
Another, somewhat lower, transition occurs at point A. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5 Calculated bands for copper, illustrating that the absorption threshold for transitions up from the conduction band 
is about 4 eV, while the threshold for transitions from the d-band to the conduction band is only about 2 eV. The energy 
scale is in tenths of a rydberg (0.1 Ry = 1.36 eV).  
 
The measured absorption in copper (see Figure 6) does increase sharply at about 2 eV. Thus its 
reddish color is a direct manifestation of the rather low threshold for the excitation of d-band 
electrons into the conduction band, 2eV lying somewhere in the orange part of the visible spectrum. 
A threshold at about the same energy also produces the yellowish color of gold. Silver, however is 
more complicated: the threshold for the d-band excitation and plasmon-like threshold merge at 
about 4eV, resulting in a more uniform reflectivity throughout the visible range of spectrum (from 
about 2eV to 4eV). 
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Fig.6 The imaginary part of the dielectric constants deduced from reflectivity measurements. (H. Ehrenreich and H. R. 
Phillip, Phys. Rev. 128, 1622 (1962).) Note the characteristic free electron behavior (1/ω3) below about 2 eV in copper 
and below about 4 eV in silver. The onset of interband absorption is quite apparent. 

Finally we consider an example of the optical properties of a semiconductor and illustrate an 
important feature of the optical spectra. The feature is that the largest contribution to the dielectric 
functions comes from those points in the Brillouin zone at which ( )nE ′ k and ( )nE k have the same 

slope. At these points transitions accumulate to produce a peak in the absorption spectrum. 
Mathematically this condition can be written as  

[ ]( ) ( ) 0n nE E′∇ − =k k .  (24) 

These points are known as the critical points. 

Figure 7 shows the imaginary part of the dielectric function for Ge, and correlates the peaks in the 
curve with the critical points responsible for the high absorption values. One can see that studies of 
optical absorption can be highly useful in the determination of band structure, and particularly in 
delineating the various critical points in the zone. 

 

 

 

 

 

 

 

 

 

Fig. 7 (a) Imaginary dielectric constant versus photon energy for Ge. (b) The band structure of Ge. Dashed arrows 
indicate various critical points. [After Phillips, 1966] 

As pointed out, the critical points assume a particularly significant role in the interpretation of interband-
transition spectroscopic data. Since these points usually occur at symmetry points or along symmetry 
direction in the BZ a knowledge of the interband energy difference ( )nE ′ k - ( )nE k  and the symmetry 

character (i.e., the location in the zone) of these points are highly useful in elucidating the band structure of 
the solid.   


