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 Section 10 

Metals: Electron Dynamics and Fermi Surfaces 

Electron dynamics 

The next important subject we address is electron dynamics in metals. Our consideration will be 
based on a semiclassical model. The term “semiclassical”  comes from the fact that within this 
model the electronic structure is described quantum-mechanically but electron dynamics itself is 
considered in a classical way, i.e. using classical equations of motion. Within the semiclassical 
model we assume that we know the electronic structure of metal, which determines the energy 
band as a function of the wave vector. The aim of the model is to relate the band structure to the 
transport properties as a response to the applied electric field.  

Given the functions En(k) the semiclassical model associates with each electron a position, a 
wave vector and a band index n. In the presence of applied fields the position, the wave vector, 
and the index are taken to evolve according to the following rules: 

(1) The band index is a constant of the motion. The semiclassical model ignores the possibility 
of interband transitions. This implies that within this model it assumed that the applied electric 
field is small. 

(2) The time evolution of the position and the wave vector of an electron with band index n are 
determined by the equations of motion: 
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Strictly speaking Eq.(2) has to be proved. It is identical to the Newton’s second law if we 
assume that the electron momentum is equal to k� . The fact that electrons belong to particular 
bands makes their movement in the applied electric field different from that of free electrons.  
For example, if the applied electric field is independent of time, according to Eq.(2) the wave 
vector of the electron increases uniformly with time.  
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Since velocity and energy are periodic in the reciprocal lattice, the velocity and the energy will 
be oscillatory. This is in striking contrast to the free electron case, where v is proportional to k 
and grows linearly in time.  

The k dependence (and, to within a scale factor, the t dependence) of the velocity is illustrated in 
Fig.2, where both E(k) and v(k) are plotted in one dimension. Although the velocity is linear in k 
near the band minimum, it reaches a maximum as the zone boundary is approached, and then 
drops back down, going to zero at the zone edge. In the region between the maximum of v and 
the zone edge the velocity actually decreases with increasing k, so that the acceleration of the 
electron is opposite to the externally applied electric force! 

This extraordinary behavior is a consequence of the additional force exerted by the periodic 
potential, which is included in the functional form of E(k). As an electron approaches a Bragg 
plane, the external electric field moves it in the opposite direction due to the Bragg-reflection.  
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Fig.2. E(k) and v(k) vs. k in one dimension (or three dimensions, in a direction parallel to a reciprocal lattice vector 
that determines one of the first-zone faces.) 
 
Effective mass 

When discussing electron dynamics in solids it is often convenient to introduce the concept of 
effective mass. If we differentiate Eq. (1) with respect to time we find that  
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Where the second derivative with respect to a vector should be understood as a tensor. Using Eq. 
(2) we find that 
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In one dimensional case this reduces to  
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This has the same form as the Newton’s second law, provided that we defined an effective mass 
by the relation: 
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The mass m* is inversely proportional to the curvature of the band; where the curvature is large - 
that is, d2E/dk2 is large - the mass is small; a small curvature implies a large mass (Fig. 3). 
 
 
 
 
 
 
 
 
 

 
Fig. 3  The inverse relationship between the mass and the curvature of the energy band. 
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In a general case the effective mass is a tensor which is defined by  
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where kµ  and kν  are Cartesian coordinates.   

The effective mass can be different depending on the directions on the crystal. 

Current density 

The current density within a free electron model was defined as en= −j v , where n is the number 
of valence electrons per unit volume, and v is the velocity of electrons. This expression can 
generalized to the case of Bloch electrons. In this case the velocity depends of the wave vector 
and we need to sum up over k vectors for which there are occupied states available:    
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Here the sum is performed within the extended zone scheme and V is the volume of the solid. It 
is often convenient to replace the summation by the integration. Because the volume of k-space 
per allowed k value is 38 /Vπ∆ =k , we can write the sum over k as 
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Taking into account the spin degeneracy we obtain for the current density: 
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Using this expression we show now that completely filled bands do not contribute to the current. 
For the filled bands Eq. (11) should be replaces by  
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This vanishes as a consequence of the theorem that the integral over any primitive cell of the 
gradient of a periodic function must vanish. 

Prove: 

Let f(r) be any function with the periodicity of the lattice. The integral over the primitive cell  
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is independent of ′r . Therefore, 
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At point 0′ =r  this results in 
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Since the Brillouin zone is a primitive cell in the reciprocal space the integral (12) vanishes. This 
implied that filled bands do not contribute to the current. Only partially filled bands need be 
considered in calculating the electronic properties of a solid. This explains why the Drude’s 
theory assumption is often successful: in many cases those bands derived from the atomic 
valence electrons are the only ones that are partially filled.   

Hole 

One of the most impressive achievements of the semiclassical model is its explanation for 
phenomena that free electron theory can account for only if the carriers have a positive charge. 
We now introduce the concept of a hole.  

The contribution of all the electrons in a given band to the current density is given by Eq. (11), 
where the integral is over all occupied levels in the band. By exploiting the fact that a completely 
filled band carries no current,  
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we can equally well write Eq. (11), in the form: 

3
( )

4unoccupied

d
e

π
= + �

k
j v k . (17) 

Thus the current produced by electrons occupying a specified set of levels in a band is precisely 
the same as the current that would be produced if the specified levels were unoccupied and all 
other levels in the band were occupied but with particles of charge +e (opposite to the electronic 
charge). 

Thus, even though the only charge carriers are electrons, we may, whenever it is convenient, 
consider the current to be carried entirely by fictitious particles of positive charge that fill all 
those levels in the band that are unoccupied by electrons. The fictitious particles are called holes. 

It must be emphasized that pictures cannot be mixed within a given band. If one wishes to regard 
electrons as carrying the current, then the unoccupied levels make no contribution; if one wishes 
to regard the holes as carrying the current, then the electrons make no contribution. One may, 
however, regard some bands using the electron picture and other bands using the hole picture, as 
suits one's convenience. 

Normally it is convenient to consider transport of the holes for the bands which are almost 
occupied, so that only a few electrons are missing. This happens in semiconductors in which a 
few electrons are excited from the valence to the conduction bands.      

Similar to electrons we can introduce the effective mass for the holes. It has a negative sign.   

Fermi surface 

The ground state of N Bloch electrons is constructed is constructed in a similar fashion as that for free 
electrons, i.e. by occupying all one-electron energy levels with band energies En(k) less than EF, where EF 
is determined by requiring the total number of levels with energies less than EF to be equal to the total 
number of electrons. The wave vector k must be confined to a single primitive cell of the reciprocal 
lattice. When the lowest of these levels are filled by a specified number of electrons, two quite distinct 
types of configuration can result: 

1. A certain number of bands may be completely filled, all others remaining empty. Because the 
number of levels in a band is equal to the number of primitive cells in the crystal (and because each level 
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can accommodate two electrons (one of each spin), a configuration with a band gap can arise only if 
the number of electrons per primitive cell is even. 

2. A number of bands may be partially filled. When this occurs, the energy of the highest 
occupied level, the Fermi energy EF, lies within the energy range of one or more bands. For each 
partially filled band there will be a surface in k-space separating the occupied from the 
unoccupied levels. The set of all such surfaces is known as the Fermi surface, and is the 
generalization to Bloch electrons of the free electron Fermi sphere. The parts of the Fermi 
surface arising from individual partially filled bands are known as branches of the Fermi surface.  

Analytically, the branch of the Fermi surface in the n-th band is that surface in k-space 
determined by 

( )n FE E=k  (18) 

Thus the Fermi surface is a constant energy surface (surfaces) in k-space. 

Since the En(k) are periodic in the reciprocal lattice, the complete solution to Eq.(18) for each n 
is a k-space surface with the periodicity of the reciprocal lattice. When a branch of the Fermi 
surface is represented by the full periodic structure, it is said to be described in a repeated zone 
scheme. Often, however, it is preferable to take just enough of each branch of the Fermi surface 
so that every physically distinct level is represented by just one point of the surface. This is 
achieved by representing each branch by that portion of the full periodic surface contained 
within a single primitive cell of the reciprocal lattice. Such a representation is described as a 
reduced zone scheme. The primitive cell chosen is often, but not always, the first Brillouin zone. 

Brillouin zones 

We consider now an example of building of a Fermi surface. We start from considering the 
Fermi surface for free electrons and then investigate the influence of the crystal potential. The 
Fermi surface for free electrons is a sphere centered at k = 0. To construct the Fermi surface in 
the reduced-zone scheme, one can translate all the pieces of the sphere into the first zone through 
reciprocal lattice vectors. This procedure is made systematic through the geometrical notion of 
the higher Brillouin zones. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 (a) Construction in k space of the first three Brillouin zones of a square lattice. The three shortest forms of the 
reciprocal lattice vectors are indicated as G1, G2, and G3. The lines drawn are perpendicular bisectors of these G's. 
(b) On constructing all l ines equivalent by symmetry to the three lines in (a) we obtain the regions in k space which 
form the first three Brillouin zones. The numbers denote the zone to which the regions belong; the numbers here 
are ordered according to the length of vector G involved in the construction of the outer boundary of the region. 
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We illustrate this construction for the two dimensional cubic lattice shown in Fig.4. Recall that 
the boundaries of the Brillouin zones are planes normal to G at the midpoint of G. The first 
Brillouin zone of the square lattice is the area enclosed by the perpendicular bisectors of G1 and 
of the three reciprocal lattice vectors equivalent by symmetry to G1 in Fig. 4a. These four 

reciprocal lattice vectors are ( ) ˆ2 / xaπ± k  and ( ) ˆ2 / yaπ± k . 

The second zone is constructed from G2 and the three vectors equivalent to it by symmetry, and 
similarly for the third zone. The pieces of the second and third zones are drawn in Fig. 4b.  

In general, the first Brillouin zone is the set of points in k-space that can be reached from the 
origin without crossing any Bragg plane. The second Brillouin zone is the set of points that can 
be reached from the first zone by crossing only one Bragg plane. The (n+1)-th Brillouin zone is 
the set of points not in the (n−l)-th zone that can be reached from the n-th zone by crossing only 
one Bragg plane. 

 
 
 
 

 

Fig.5 Brillouin zones of a square lattice in two dimensions. The 
circle shown is a surface of constant energy for free electrons; it will 
be the Fermi surface for some particular value of the electron 
concentration. The total area of the filled region in k space depends 
only on the electron concentration and is independent of the 
interaction of the electrons with the lattice. The shape of the Fermi 
surface depends on the lattice interaction, and the shape will not be 
an exact circle in an actual lattice.  

 

The free electron Fermi surface for an arbitrary electron concentration is shown in Fig. 5. Now 
we perform a transformation to the reduced zone scheme as is shown in Figs.6 and 7. We take 

the triangle labeled 2a and move it by a reciprocal lattice vector ( ) ˆ2 / xaπ= −G k  such that the 

triangle reappears in the area of the first Brillouin zone (Fig. 6). Other reciprocal lattice vectors 
will shift the triangles 2b, 2c, 2d to other parts of the first zone, completing the mapping of the 
second zone into the reduced zone scheme. The parts of the Fermi surface falling in the second 
zone are now connected, as shown in Fig. 7. 

 

 

 

 

 

 

 

Fig.6 Mapping of the first, second, and third Brillouin zones in the reduced zone scheme. The sections of the 
second zone in Fig. 4 are put together into a square by translation through an appropriate reciprocal lattice vector. 
A different G is needed for each piece of a zone. 
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Fig.7 The free electron Fermi surfaces of Fig.5, as viewed in the reduced zone scheme. The shaded areas represent 
occupied electron states. Parts of the Fermi surface fall in the second, third and fourth zones. The fourth zone is not 
shown. The first zone is entirely occupied. 

Construction of Brillouin zones and Fermi surfaces in three-dimensions is more complicated. 
Fig.8 shows the first three Brillouin zones for bcc and fcc structures.  

 

 

 

 

 

 

 

Fig.8 Surfaces of the first, second, and third Brillouin zones for (a) body-centered cubic 
and (b) face-centered cubic crystals. (Only the exterior surfaces are shown. The 
interior surface of the nth zone is identical to the exterior surface of the (n−l)-th zone.) 
Evidently the surfaces bounding the zones become increasingly complex as the zone 
number increases.  

 

The free electron Fermi surfaces for fcc cubic metals of valence 2 and 3 are shown in Fig.9.  

 

 

 

 

 

 

 

 

 

 

Fig.9 The free electron Fermi surfaces for face-centered cubic metals of valence 2 and 3. (For valence 1 the surface 
lies entirely within the interior of the first zone and therefore remains a sphere to lowest order) All branches of the 
Fermi surface are shown. The primitive cells in which they are displayed have the shape and orientation of the first 
Brillouin zone.  
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Effect of a crystal potential 

How do we go from Fermi surfaces for free electrons to Fermi surfaces in the presence of a weak 
crystal potential? We can make approximate constructions freehand by the use of four facts: 

(i) The interaction of the electron with the periodic potential of the crystal causes energy gaps at 
the zone boundaries. 

(ii) Almost always the Fermi surface will intersect zone boundaries perpendicularly. Using the 

equation for the energy near the zone boundary it is easy to show that 
2

1

2
( )

dE

d m
= −k G

k
�

, which 

implies that on the Bragg plane the gradient of energy is parallel to the Bragg plane. Since the 
gradient is perpendicular to the surfaces on which function is constant, the constant energy 
surfaces at the Bragg plane are perpendicular to the plane.  

(iii) The crystal potential will round out sharp corners in the Fermi surfaces. 

(iv) The total volume enclosed by the Fermi surface depends only on the electron concentration 
and is independent of the details of the lattice interaction. 

(v) If a branch of the Fermi surface consists of very small pieces of surface (surrounding either 
occupied or unoccupied levels, known as "pockets of electrons" or "pockets of holes"), then a 
weak periodic potential may cause these to disappear. In addition, if the free electron Fermi 
surface has parts with a very narrow cross section, a weak periodic potential may cause it to 
become disconnected at such points. 

Below we give a few examples for real metals. 

Alkali metals 

The radius of the Fermi sphere in bcc alkali metals is less than the shortest distance from the 
center of the zone to a zone face and therefore the Fermi sphere lies entirely within the first 
Brillouin zone. The crystal potential does not distort much the free electron Fermi surface and it 
remains very similar to a sphere.  

Fig.10 Fermi surface of sodium. 

 

The noble metals 

The Fermi surface for a single half-filled free electron band in an fcc Bravais lattice is a sphere 
entirely contained within the first Brillouin zone, approaching the surface of the zone most 
closely in the [111] directions, where it reaches 0.903 of the distance from the origin to the 
center of the hexagonal face. For all three noble metals therefore their Fermi surfaces are closely 
related to the free electron sphere. However, in the [111] directions contact is actually made with 
the zone faces, and the measured Fermi surfaces have the shape shown in Fig.11. Eight "necks" 
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reach out to touch the eight hexagonal faces of the zone, but otherwise the surface is not grossly 
distorted from spherical.  
 

 
 
 
 
 
 
 
 
Fig. 11 In the three noble metals the free electron sphere bulges out in the [111] 
directions to make contact with the hexagonal zone faces. 

 

The cubic divalent metals 

With two electrons per primitive cell, calcium, strontium, and barium could, in principle, be 
insulators. In the free electron model, the Fermi sphere has the same volume as the first zone and 
therefore intersects the zone faces. The free electron Fermi surface is thus a fairly complex 
structure in the first zone, and pockets of electrons in the second. The question is whether the 
effective lattice potential is strong enough to shrink the second-zone pockets down to zero 
volume, thereby filling up all the unoccupied levels in the first zone. Evidently this is not the 
case, since the group II elements are all metals. Calculations show that the first Brillouin zone is 
completely filled and a small number of electrons in the second zone determine the non-zero 
conductance.  

 Fig.12 Fermi surface of calcium 

 

Trivalent metals 

The Fermi surface of aluminum is close to that of the free electron surface for fcc cubic 
monoatomic lattice with three conduction electrons per atom. The first Brillouin zone is filled 
and the Fermi surface of free electrons is entirely contained in the second, third and fourth 
Brillouin zones.  When displayed in a reduced-zone scheme the second-zone surface is a closed 
structure containing unoccupied levels, while the third-zone surface is a complex structure of 
narrow tubes (Fig.9). The amount of surface in the fourth zone is very small, enclosing tiny 
pockets of occupied levels. 

The effect of a weak periodic potential is to eliminate the fourth-zone pockets of electrons, and 
reduce the third-zone surface to a set of disconnected "rings" (Fig.13).  

Aluminum provides a striking illustration of the theory of Hall coefficients. The high-field Hall 
coefficient should be ( )1/H e hR n n e= − − , where ne and nh are the number of levels per unit 

volume enclosed by the particle-like and hole-like branches of the Fermi surface. Since the first 
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zone of aluminum is completely filled and accommodates two electrons per atom, one of the 
three valence electrons per atom remains to occupy second- and third-zone levels. Thus  

II III

3e e

n
n n+ =  (19) 

where n is the free electron carrier density appropriate to valence 3. On the other hand, since the 
total number of levels in any zone is enough to hold two electrons per atom, we also have 

II II 2
3e h

n
n n+ =  (20) 

Subtracting (20) from (19) gives 

III II

3e h

n
n n− = −  (21) 

Thus the high-field Hall coefficient should have a positive sign and yield an effective density of 
carriers a third of the free electron value. This is precisely what is observed.  

 Fig.13 Fermi surface of aluminum 

 


