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Section 4: Elastic Properties 

Elastic constants 

Elastic properties of solids are determined by interatomic forces acting on atoms when they are 
displaced from the equilibrium positions. At small deformations these forces are proportional to the 
displacements of atoms. As an example, consider a 1D solid. A typical binding curve has a minimum 
at the equilibrium interatomic distance R0 : 
 
 
 
 
 
 
 
 
 
 
 
Expanding the energy at the minimum in the Taylor series we find: 
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where we defined  
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 and  0u R R= −  is the displacement of an atom from equilibrium 

position R0.  Differentiating Eq.(4.2), 
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,  we obtain force F acting on an atom : 

F ku= − . (4.3) 

The constant k is an interatomic force constant. Eq.(4.3) represents the simplest expression for the 
Hooke’s law showing that the force acting on an atom, F, is proportional to the displacement u. This 
law is valid only for small displacements and characterizes a linear region in which the restoring force 
is linear with respect to the displacement of atoms. 

The elastic properties are described by considering a crystal as a homogeneous continuum medium 
rather than a periodic array of atoms. In a general case the problem is formulated as follows:  

(i) Apply forces, which are described in terms of stress σ, and determine displacements of atoms 
which are described in terms of strain ε.  

(ii) Define elastic constants C relating stress σ and strain ε, so that σ = Cε.  
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Example: In 1D case, F ku= − , where u is a change in the crystal length under applied force F. We can 
therefore write 

F kL u
C

A A L
σ ε−� �� �= = =� �� �
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, (4.4) 

where A is the area of the cross section, and L is the equilibrium length of the 1D crystal. The stress σ  
is defined as the force per unit area and the strain ε is the dimensionless constant which describes the 
relative displacement (deformation).   

In a general case of a 3D crystal the stress and the strain are tensors which are defined as follows. 

Stress has the meaning of local applied “pressure” . It has components ijσ , showing that the force can 

be applied along 3 directions “ i”  and 3 faces “ j” . The stress is defined locally, so that ( )ij ijσ σ= r .  

Compression stress  ( xx yy zzσ σ σ ): 
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Shear stress  ( xy yx xz zx yz zyσ σ σ σ σ σ ): 
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Shear forces must come in pairs to conserve angular acceleration inside the crystal: 
 
 
 
 
 
 
That makes the stress tensor diagonal, i.e.  

i j jiσ σ= . (4.7) 

 
Strain determines relative atomic displacement:  

( ) i
ij

j

du
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ε =r , (4.8) 

where ui is displacement in “ i”  direction and xj is the direction along which ui may vary. 
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 Compression strain ( xx yy zzε ε ε ): 

x
xx

du
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ε = , (4.9) 

In a homogeneous crystal  xxε  is a constant xx

u

L
ε = , where u is the change in the crystal length L. 

Shear strain ( xy yx xz zx yz zyε ε ε ε ε ε ) : 
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Since ijσ  and jiσ  must always be applied together, we can define shear strains symmetrically: 
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Elastic constants C relate the strain and the stress in a linear fashion: 

ij ijkl kl
kl

Cσ ε=� . (4.12) 

Eq.(4.12) is a general form of the Hooke’s law. The matrix C in a most general form has 3×3×3×3=81 
components. However, due to the symmetrical form of ijσ  and ijε  - each of them have 6 independent 

components, we need only 36 elastic constants. There is a convention to denote these constants by Cmn, 
where indices m and n are defined as 1=xx, 2=yy, 3=zz for the compression components and as 4=yz, 
5=zx, 6=xy for the shear components. For example, 11 xxxxC C= , 12 xxyyC C= , 44 yzyzC C= . 

Therefore, the general form of the Hooke’s law is given by 
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σyx 

x 
y 

uy 

compression 

strain 

compression mixed 

shear 

mixed shear stress 



Physics 927 
E.Y.Tsymbal  

 4 

All 36 elastic constants are independent. However in crystals many of them are the same due to 
symmetry. In particular, in cubic crystals 11 22 33C C C= = , 12 21 23 32 13 31C C C C C C= = = = = , 

44 55 66C C C= =  due the fact that x, y, and z axes are identical by symmetry. Also the off diagonal shear 

components are zero, i.e.  45 54 56 65 46 64 0C C C C C C= = = = = = , and mixed compression/shear 

coupling does not occur, i.e. 14 41 ... 0C C= = = . Therefore, the cubic elasticity matrix has the form  
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. (4.14) 

 

We have only 3 independent constants.  

Longitudinal compression (Young’s modulus): 
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Transverse expansion: 
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Shear modulus: 
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Elastic waves 

So far, we have assumed that atoms were at rest at their lattice sites. Atoms, however, are not quite 
stationary, but can oscillate around their equilibrium positions (e.g., as a result of thermal energy). This 
leads to lattice vibrations.  

When considering lattice vibrations three major approximations are made: 

(i) It is assumed that displacements of atoms are small, i.e. u a� , where a is a lattice parameter. 

(ii) Forces acting on atoms are assumed to be harmonic, i.e. proportional to the displacements: 
F Cu= − . This is the same approximation which is used to describe a harmonic oscillator. 

(iii) It is assumed that the adiabatic approximation is valid – electrons follow atoms, so that the nature 
of bond is not affected by vibrations. 

The discreteness of the lattice must be taken into account in the discussion of lattice vibrations. 
However, when the wavelength is very long, i.e. aλ � ,  one may disregard the atomic nature and 
treat the solid as a continuous medium. Such vibrations are referred to as elastic waves. 

We consider an elastic wave in a long bar of cross-sectional area A and mass density /M Vρ = . 

(1) First, we consider a longitudinal wave of compression/expansion.   

 

 

 

 

 

We look at a segment of width dx at the point x and denote the elastic displacement by u. According to 
the Newton’s second low 
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which implies that 
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where we introduced the compression stress xxσ . Assuming that the wave propagates along the [100] 

direction, we can write the Hooke’s law in the form  

11xx xxCσ ε= , (4.21) 

where C11 is Young’s modulus. Since xx

du

dx
ε = , this leads to the wave equation  
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A solution if the wave equation has the form of a propagating longitudinal plane wave 
( ) ˆ( , ) ei qx tx t A ω−=u x , (4.23) 

where q is the wave vector,  

vLqω = , 

is the frequency, and (4.24) 

11vL
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is the longitudinal velocity of sound.  
 
(2) Now we consider a transverse wave which is controlled by shear stress and strain.    

 
 

 

 

 

In this case 
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where the shear stress xyσ  is determined by the shear modulus C44 and  shear strain xy

du

dx
ε = : 

44xy xyCσ ε= . (4.27) 

Therefore Eq.(4.26) takes the form  
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resulting in the wave equation 
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This is the equation for the transverse plane wave, which has displacements in the y direction but 
propagates in the x direction: 

( ) ˆ( , ) ei qx tx t A ω−=u y ,  (4.30) 
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where q is the wave vector,  

vTqω = , 

in the frequency, and (4.31) 

44vT

C

ρ
=  (4.32) 

is the transverse velocity of sound. Note that there are two linear independent transverse modes 
characterized by the displacements in y and in z directions. For the [100] direction, by symmetry the 
velocities of these modes are the same and given by Eq.(4.32).  

Normally 11 44C C>  and therefore v vL T> . 

Waves we have considered are in [100] direction, i.e. q || [100]. In other directions, the sound velocity 
depends on combinations of elastic constants: 

v effC

ρ
= , (4.33) 

where Ceff is an effective elastic constant which is given for cubic crystals in the table: 
 

Mode q || [100] q || [110]. q || [111] 

L C11 ½(C11+C12+2C44) 
�

(C11+2 C12+4C44) 
T1 C44 C44 

�
 (C11−C12+C44) 

T2 C44 ½(C11−C12) 
�

 (C11−C12+C44) 
 
The relation connecting the frequency ω and the wave vector q is known as the dispersion relation. For 
elastic waves, ω is proportional to q, and the ratio ω/q gives a constant velocity. The figure below 
shows the dispersion relation for elastic waves. There are three modes – one longitudinal and two 
transverse, which represent straight lines whose slopes are equal to the respective velocities of sound. 
For the [100] and [111] directions the two transverse modes are degenerate, i.e. have the same vT. 
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