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Chapter 1

Preface

Preface

This is the second packet of lecture notes that I have typeset using LaTex.
The basic idea here is the preserve my paper and pencil notes in a more
accessible manner that both the students and I can retain. Although my
memory on when these notes were put together has begun to slip I believe 1
worked on them towards the end of the summer of 2004. 1 also recall typing
these notes in the hotel at the fall ACS meeting held in Philadelphia that
year. The text might appear to be a little forced together given the short
first semester quantum section that I have at the beginning. This is because
there was a last minute change to the teaching assignment and I basically
taught quantum that year even though I was supposed to do spectroscopy.
My spectroscopy notes are now being typeset into LaTex and should be up
shortly as a separate packet. A good chuck of the later time dependent part
of these notes comes from handwritten notes I took over 10 years ago when
I took such a class from Keith Nelson at MIT. The class was 5.74 and I have
fond memories of sitting in some classroom on the first floor of building 2
(yes, the same one as in the movie Good Will Hunting) that might have
come straight out of the 1920s. There was also some massive wavepacket
simulation we were supposed to do for the class and I also remember doing
a few all nighters in the basement Athena cluster in building 4. Anyway, the
hope is that the next time I teach this class, I can focus more on developing
stronger problem sets.

In the future, I will try to add an index when I have a lot of free time.
Helps find things. 1 will also go back and check the sign of £ = wA, in the
Coulomb gauge, Lorentz gauge section.
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Chapter 2

Revision History

e Version 1 inception, September 25, 2004
e Corrected general typos, 1/06
e Corrected logic bomb in the transmission coefficient section, 1/06

e Corrected logic bomb in the Maxwell, Coulomb and Lorentz gauge
section, 1/06

Added this revision history page, 1/06

e Added the preface, 1/06
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Chapter 3

Introduction

Historical stuff

e Towards the end of the 19th century many physicists felt that all the
principles of physics had been discovered and that little remained but
to clean up and improve the precision of measurments.

e Things looked so good that Michelson of Michelson inteferometer fame
(Nobel Prize winner) said in 1894 when opening his lab at the Univer-
sity of Chicago that “future discoveries must be looked for in the 6th
decimal place.”

e There was great reason to believe this. You had Newtonian mechan-
ics that was well developed which described he behavior of particles
through its mass, momentum and velocity, to tremendous accuracy.

o A lot was understood about waves as well. Waves were and still are
characterized by an amplitude and frequency. They also exhibit char-
acteristic interference and diffraction phenomena.

¢ So you had particles on one hand and you had waves on another hand.
You could describe pretty much anything as either a particle or as a
wave.

e Now one sticking point appeared to be light. There had been a debate
going on for a while whether light was a wave or was a particle. This
particle viewpoint is referred to as the corpuscular theory of light.

e Newton throught light was a particle. Huygens on the other hand
though it was a wave.
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e So this debate went on and on for a long time until Young did his fa-
mous double slit experiment and basically showed that light exhibited
inteference phenomena. This was remarkable because as mentioned
above inteference is characteristic of waves. Ok, so now this experi-
ment was thought to have resolved the debate between Newton and
Huygens. Light was a wave and Huygens was right.

e The Young double slit experiment basically consists of a light source
and a screen with two slits cut into it. The slits are separated by a
distance d. Further back is another screen where light from the two
slights shines upon. Young noticed that when n\ = dsin(f) where
n is an integer and A is the wavelength of light you get constructive
inteference. So the first inteference maxmium arises at n = 1 or when
A = dsin(f). As mentioned previously, this inteference behavior is
characteristic of waves and in turn was thought to solve the debate
over the particle or wave nature of light.

e Maxwell then came along and pretty much closed the book on any
further debate. His prediction of the electromagnetic nature of light
unified the fields of optics, electricity and magnetism. Again, the view
that light was a wave came out winning.

e So now all was well in physics. But there were some problems begin-
ning to show even as people were basically congratulating themselves.

e There were a handful of experiments that were a bit of a mystery and
could not be properly explained by “classical” physics. What were
these experiments? There were four (or five) of them at least of which
I'll describe three.

¢ Blackbody radiation; (solved by Planck)
¢ The photoelectric effect; (solved by Einstein)
e The Compton effect; (solved by Compton)

e Atomic spectra; (solved by Bohr)

Blackbody radiation

The basis of blackbody radiation is that stuff emits radiation when heated.
Examples are stars or a hotplate or a piece of metal being heated in a flame.



Initially as the stuff gets hot it turns red, then yellow, then blue and then
white as the object gets hotter and hotter.

The blackbody is an idealized object that absorbs and emits all frequen-
cies perfectly.

Now what was observed was the following spread of frequencies as a
function of temperature. Note that 77 < To < T3 and you see that the
center frequency (color) changes as a function of temperature.

So to explain how these colors or center frequencies changed, Wein came
up with his displacement law called today the “Wein displacement law”.
This happened around 1890 and empirically predicted how the peak moved
with temperature.

Now what about the shape of the curve. Well, about the same time,
Raleigh was working on this problem (around 1900). He came up with the
following:

Imagine some sphere of radius k with volume

Vi = gwk?’

Now the volume of a given “mode” is k,k,k, where

2
k, = —
2
k, = —
Y Ly
L,

These relations come from boundary conditions and the factor of 2 comes
from the special case of periodic boundary conditions (called Von Karman
conditions). Basically for a function sin(kL,) = 0 at a boundary the fol-
lowing is true kL, = nm where k, = Z—: andn=1,2,3...

The number of modes N in a given sphere is

Vk _ %7’[’]{3

N = =
kokyk, 87

L,L,L,

Multiply by 2 to account for two polarizations

. KL,L,L,

N
32
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Now consider the volume density p (divide the above expression by
L.L,L,)
3
P=3m (# modes/unit volume)

Now to get the frequency density, let k& = 2{ where A = £. Therefore

k= 2wy

= Pt

2
Then p becomes o
C

Now to get the frequency density

3.3
8T 31/ ( 1 ):87TV3
c

,_dp _8m?
p = d_p = 77_;/ (# modes/unit volume/unit frequency)
v c

Next Raleigh multiplies p' by kT which is the classical average energy
of his system (< E >)

Jo Ee *TdE
< E>= kT
Jo e FTdE
leading to
u(,T) = (8—%) kT (3.1)

Now this is called the Raleigh-Jeans Law.

So when you plot this function versus experimental data you get some-
thing which blows up quadratically with frequency. This is no good. No
way-something is wrong. We can’t have the infinite emission of UV light.
This relation and derivation was re-checked by others and found to be for-
mally correct using the physics known at the time. Hence the problem came
to be known as the “Ultraviolet Catastrophe”.

Now Wein who derived the Wein displacement law earlier decided to
give it a try as well. Without going into what he did, Wein got his own
expression shown below

w(y,T) = A F (3.2)

where A and 3 are fudge factors for fitting purposes.
Now when you plot Wein’s law you get a function which blows up a low
frequencies. So this is no good either.



In summary, you have the Raleigh-Jeans and Wein laws giving functions
which do a decent job fitting the experimental data on the high and low
frequency sides respectively. But nothing which can fit the entire thing in
one shot.

So how is this fixed? Well Planck came along and found a function that
seemed to work pretty well. But to derive this expression he had to make
some important (and controversial) assumptions along the way.

Contrary to classical physics, Planck postulated that the energy of ra-
diation is discrete or “quantized”. It comes along in integer amounts called
“quanta”.

E =nhv

where n =1,2,3... and h is a constant named after Planck himself.
So instead of

& Ee #TdE

< E>= 5
fooo e T dFE
he gets
o b e nhv
0 €
Therefore
< E >= —e#”_1 (3.4)

Note that ——— is actually the Bose-Einstein distribution.
BT —1
82

Now Planck takes p = ~ and multiplies by his version of < E > to
get

w(v, T) = Bm* (_—) (3.5)
e kT —1

which is today known as the Planck distribution in his honor.
Alternatively the Planck distribution can be written in other ways. For
example, as a function of wavelength.

8mhe 1
U’()\7 T) = AE’ ( hc )

e T — 1
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Now by fitting the experimental data, Planck was able to back out the
value of his constant h = 6.62 - 1073* Joule seconds.

So Planck was able to solve the problem of blackbody radiation by as-
suming that energies were quantized.

Now we should point out that at the time a lot of people did not think
much of this and considered this result and success as a curiosity.

The photoelectric effect

The photoelectric effect is the observation that electrons are emitted when
metals such as cesium are irradiated with light.

This phenomenon was discovered by Hertz in 1887. But apart from the
experiment there were some odd observations about the phenomenon

e No electrons are ejected regardless of the incident light intenisty unless
its frequency exceeds a threshold value characteristic of the metal

e Even at very low excitation intensities, electrons are ejected immedi-
ately from the metal if the frequency v is greater than some threshold
value.

e The kinetic energy of ejected electrons increases linearly with the fre-
quency of the incident radiation.

You couldn’t explain these observations classically. Inspired by Planck’s
success explaining blackbody radiation, Einstein tried and eventually suc-
ceeded in explaining the photoelectric effect in 1905.

He assumed that light was particle-like and called each particle a “pho-
ton.” Then he said each photon carries a discrete energy hr with it.

Now when each photon smacks the metal it gives all of its incident energy
to an electron in the metal.

If hv is greater than the metal’s work function, the electron pops out
and is ejected.

The excess energy carried away by the ejected electron is therefore the
difference

KE=hv—w (3.6)

where w is the metal’s work function. This is a linear expression y = mx+b
with slope h and explains why the kinetic energy increases linearly with v.
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Finally, a fit to the line yields h in good agreement with the empiri-
cally derived fit value by Planck himself. This further solidified the idea of
quantization.

Einstein won his Nobel Prize for this work.

Atomic spectra

It was known for a while that atoms have a characteristic emission spectrum.
The emission spectrum generally consists of a series of lines with discrete
frequencies.

Now for many years people tried to come up with some scheme to explain
this line spectra, especially that of hydrogen which appeared pretty simple.

The first guy to get any sort of success was Balmer who developed an
empirical formula to predict the correct line positions for hydrogen. This
was done in 1885.

Next Rydberg generalized Balmer’s formula to get his own version that
nailed all of the hydrogen lines rather than a small subset like Balmer. His
formula was

t=n-3) 6

where R is called the Rydberg constant and ny and na are integers.

But this whole scheme was empirical. It was made up just to mathemat-
ically fit the data. We need a better understanding.

So now Bohr came into the picture and developed what is today known
as the Bohr model of the atom. He developed this model by assuming that
the angular momentum of an electron in hydrogen is quantized.

To derive his expression we need to equate the centripetal force of an
electron with the Coulomb attraction between the electron and the positively
charged nucleus.

2 2

m? g’ (3.8)

TELT

The angular momentum of the electron is assumed to be quantized.

[l =mvr =nh

where h = % and n =1,2,3.... Rearranging this yields v = 2 so that

mr

mu? n2h2

r mrs
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leading to the equality

7’L2 h2 q2

mr3  4dwer2

7’1,2 h2 q2
mr  4re,

Solve for r to obtain

n?h2 dre, 4me,nh?
m g mq

where n = 1,2,3.... This ultimately yields

4#60n2h2
myq

r =

One can see that the Bohr orbits are quantized by an integer n.

Now the total energy is

1 q2
Eip = zm® —
tot 2mv dme,r

where V(r) = ¢ - and is the Coulomb potential.

dare,
Now since
muv? B e
r dwe,r?
e
mv? =
dre, T
leading to
1/ ¢ q
E - = _
ot 2 (47Teor> de, T
_ (.2
- 2 \ 4me,r
8me,r
and finally

(3.9)

(3.10)
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dreon? K2
2

where recall that r = This allows us to keep going and get an

alternative expression for the energy.

¢  mg

~ 8me,r 4re,n2h?
mq*
 3212e2n2h2
mq*
 4e2n2h?

Etot =

We are left with

By = g3t (%) (3.11)

~ 8e2h2

where n = 1,2,3.... So now the difference in energies is

4

AE = 2 (LQ - lQ) = hv (3.12)

= 3252
8ezh ng ny

This looks familiar to the Rydberg empirically derived formula

11
=R (—2 - —2>
ny N

where R was the Rydberg constant and E = % From this we conclude that

> =

4

€sc

So Bohr was basically able to explain the discrete atomic spectra by making
assumptions contrary to classical physics.

These defeats in turn began to signal the end of the classical physics
heyday.

deBroglie wave-particle duality

So through the previous discussion on the photoelectric effect and black-
body radiation we see that light isn't 100% wave-like. It has some particle
character to it.

Around this time, with this idea in mind, deBroglie as part of his Ph. D.
thesis came up with a hypothesis of the wave-particle duality for light and
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for matter. This wave-particle duality encompasses light, electrons, C60,
other objects, and even macroscopic objects. Everything basically has both
particle and wave-like characteristics.

The deBroglie hypothesis is basically reduced to one equation these days
and is

A=1 (3.14)

where X is the deBroglie wavelength, A is Planck’s constant and p = muv is
the momentum where m is the mass.

Now even though you and I have wave-like characteristics, our wave-
lengths are extremely small and as far as anyone is concerned we are best
described by Newton’s laws.

But the wave-like property of matter becomes important when you deal
with small things. The best example is the electron and it is here with the
electron that a lot of quantum mechanics takes place.

Finally 2 last points.

e deBroglie won the Nobel Prize in ~ 1929 for this work

e The deBroglie hypothesis has been experimentally verified by experi-
ments showing diffraction and inteference effects with electrons, C60
and other objects.

So matter as well as light has wave-like properties. This is the start of
modern quantum chemistry and quantum mechanics.



Chapter 4

Fundamentals

Wavefunctions and such

Given the deBroglie wave-particle duality it turns out that we can math-
ematically express a particle like a wave using a “wavefunction” (usually
denoted ¥). This wavefunction replaces the classical concept of a trajectory
and contains all the dynamical information about a system that you can
know. Usually much of the work we will do here will be to find out what
this wavefunction looks like given certain constraints on the system (called
boundary conditions).

There is a probabilistic interpretation of the wavefunction called the
Born interpretation. In this respect

|2 = U*V is considered as a probability density
(¥|%de = U*Udz is considered as a probability

Through these quantities one can determine the probability that the particle
is somewhere. Note that from a physical perspective only |¥|? has some
physical significance. ¥ can be real or imaginary or negative but |¥|? will
be real and positive.

One consequence of the probabilistic interpretation of the wavefunction
is that it must be normalized.

/|\IJ|2dw =1

This is because the probability of finding the particle somewhere must be
unity. So generally you will see that in front of ¥(x,t) will be a constant
N which ensures normalization is met. Physical particles therefore have

15
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normalizable wavefunctions, non-physical ones have wavefunctions that are
not normalizable.

There are some important mathematical properties (or mathematical
constraints) of the wavefunction described as follows

o U must be “well behaved” in general

U must be finite (it does not blow up or show singularities. This con-
straint of course is related to being able to normalize the wavefunction.
Can’t do it if it goes nuts.)

e U must be single valued. Obviously it doesn’t make sense to have
multiple probabilities at a given position.

U must be continuous.

U must have a first derivative (related to the previous statement)

U must have a second derivative (related to the previous, previous
statement)

U must be integrable and hence normalizable (basically a consequence
of 1 and 2)

Other properties to remember include
e normalization [ |U|%dz =1

e orthogonality [ Wi Wsdxz = 0. Thus these two wavefunctions ¥; and
U5 have no mutual spatial overlap.

Observables

All dynamical information about the particle or system is contained in the
wavefunction. This includes observables such as

e position
e momentum
e angular momentum

® energy
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So while the wavefunction itself is not a measurable quantity, these observ-
ables are in principle.

In quantum mechanics, just like the particle is represented by a mathe-
matical wavefunction, observables are represented by mathematical “opera-
tors”.

An operator will act on a wavefunction to transform it into another
function. Some examples of operators include

e z (multiply by x)

o % (take the partial derivative with respect to x)

. % (take the partial derivative with respect to time)

You will sometimes see operators denoted by a little hat on top of it. For
example

e I = x operator (multiply by x)
e § =y operator (multiply by y)

e and so forth

Correspondence principle

In quantum mechanics all physical observables have corresponding opera-
tors. Two fundamental operators are the position operator z and the mo-
mentum operator p.

¢ position operator, £ = z. (read as multiply by x)

e momentum operator, p = —ihV = —ih% (read as take the derivative
with respect to x and multiply by —ih)

All other operators can be constructured from combinations of these two
fundamental operators. For example, for the kinetic energy operator (used
to extract out the energy of the particle through its wavefunction)

2

r - P

2m

1 0 0
- %(‘”‘%) (‘”‘L%)

1 2 O?
= %(hw>

h2 62
 2m 022
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This leads to

T=_1220° (4.1)

" 2m 922

For the potential energy V(z) we have
Viz)=V(x) (4.2)

Read this as multiply by V' (z).
For the total energy in 1D we have the operator H = T + V where H is
called the Hamiltonian operator.

H = T+V
K2 92
= w2 TV
Therefore
H=-L2 1 V() (4.3)

This is the total energy operator called the Hamiltonian operator or Hamil-
tonian for short.
For the total energy in 3D

P pf, P
H = B Py Py
2m+2m+2m+ (,9,2)

1 D ) v, | p?
R? 9% R 92 m? 52
B _%@_%a_y?_z_m@J’V(x’y’z)

This results in

y2

H=-IL (3—+5’—2+83—;) +V(z,9,2) (4.4)

H=—-Ly2 (4.5)

where V2 is called the Laplacian or “Del-squared” and

o 0 0
V‘(%’a@@)

In addition A = V2 (French)
So to summarize you can see that other operators can be built up from
the fundamental operators Z and p.
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Eigenvalues and eigenfunctions

Now a special class of function which when operated on yields itself again
(may be multiplied by a constant or something) is called an eigenfunction
(or eigenvector) of the operator. The constant that falls out is called an
eigenvalue of the operator. For example, you could have

o

Here the function e** is an eigenfunction of the % operator and the constant
« is an eigenvalue of the operator.

Expectation values

The average of mean value of an observable A is by definition

< A>= [U*AVda (4.6)

This is called “sandwiching”.
In the special case that ¥ is an eigenfunction of the operator A

AV = qU
Therefore

<A> = /\D*Amdx

= /\If*a‘lfdm
= a/‘ll*\Iidx

= @ since by normalization the integral is 1
Therefore
<A>=a

in the special case that ¥ is an eigenfunction of A.
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Dirac Bra-Ket notation (a quick aside)

Dirac suggested a shorthand notation for writing and dealing with wave-
functions, operators and such. This new notation turns out to be easier and
faster than the default calculus approach.

In this notation

e A wavefunction ¥ is denoted by |¥ > and is called a ket

e The complex conjugate ¥* is denoted by < | and is called a bra
Bras and kets follow the rules of linear algebra

o < alb>=<bla>*

e [aA >=a|A > if a is a constant (a scalar)

o <ad|=a" <A

Likewise
o <AbBB+cC>=b< AlB>+c< AlC >
Integrals are represented in the following fashion
/\I/T\Ihdx = < 1|1 >= 1 normalization
/\Ilé\ll1dx = < 2|1 >= 0 orthogonality
/\IITA\Ihda: = < 1JA]1 > Sandwiching
/ UsAUde = < 2|A|]l > Sandwiching

and so forth.

Operator math

Just as wavefunctions have to obey certain constraints, they are important
restrictions on operators that represent observable quantities. This is called
“linearity” and “hermiticity”
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Linearity:

An operator A is linear for any constants a and 3 and wavefuncions |f >
and |g > if

A(elf > +8lg >) = ad|f > +BAg >
So the operator acting on the whole superposition wavefunction ¥, =
alf > +3|g > is the same as the operator acting individually on the parts.
Hermiticity:

An operator A is Hermitian if its integrals obey the following relationship
for all valid |f > and |g >

/ VAV, dr = / U AV da
< fldlg>* = <glAlf >

This restriction ensures that eigenvalues of A are all real-valued (as opposed
to complex).

If its going to be observable in real life the number has to be real (not
complex).

“Proof”’:

'k > is an eigenfunction of A with eigenvalue k. Because A is Hermitian

< k|Alk>* = <klAk>
K = k

Therefore k is real valued.
Furthermore, eigenfunctions of a Hermitian operator associated with dif-
ferent eigenvalues are all orthogonal.

“Proof”:

< jlAlk >* = <KklAlj>
E<jlk>" = j<k|j> where < k|j >=<jlk>"
(k—Jj)<klj> =0
Since k # j (they are different eigenvalues)

<Eklj>=0
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More on operators

AU >= AU >=|T >
so that

' > s <
AT > +— < AU
AT > «— < U]Af

where AT is called the adjoint of A operator.

More games with the adjoint

1)
< QAT > = < ¢|AT >
= < AU|p >
< U Af|p >*
Therefore
< ¢|A|T >=< U|AT|¢p >* (4.7)
of course if A = A then A is Hermitian.
2)
< GlA|T >=< ¢|AT > (4.8)
< AT >=< ATg|T > (4.9)

The first expression reflects operation on the right. The second expression
reflects operating on the left.

3)

(AB)! = BT AT (4.10)

Proof: Let



23

Take adjoint now

|B
B

— < BU|A!
— < U|BTA?

Call C = AB or Cf = BYAf resulting in
> — <t

AlBU >
AB|U >

This ends up with

(AB)t = BT AT (4.11)

4) If A and B are Hermitian (A = A" and B = BY)

A=AB+ (B, A

N
Z
[
S
G
[
09>

This results in the relationship where [B, A] is called the “commutator” of
the two operators. This will be introduced in the next section.

(AB)' = AB + B, 4] (4.12)

Commutators

A wavefunction ¥ with a characteristic well-defined value of some observable
quantity is an eigenfunction of the corresponding operator. However, this
¥ does not have to have a characteristic value of any other observable.

For a ¥ to have a characteristic value of 2 observables simultaneously, the
corresponding operators must “commute”

Definition of “commute”

The action of the two operators say A and B taken in succession on any ¥
is identical to the action of the operators taken in reverse order.

AB = BA (4.13)

or equivalently that the “commutator” of the two operators equals zero.
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Definition of “commutator”
AB=AB BA

A special case is

A,B]= AB—-BA=0

which occurs when A and B commute.
Now if such a ¥ exists then it is an eigenfunction of both operators. For
example

ABIB>) = Ap|B>=pA|5 >
But now if AB = BA then
AB|3> = BAB>
BAIB> = B(A[>)
which means that (A8 >) is an
eigenfunction of B, call it |8 >
= B|f >
= BB >

This implies that |3 > is an eigenfunction of A. Hence |3 > is an eigenfunc-
tion of both A and B if they commute.

Alternative derivation

Claim that if |3 > is an eigenfunction of B

B|3 >= |3 >

Then if A and B commute (i.e. [B,A] = 0), |[A8 > is also an eigenfunction
of B with eigenvalue 3. To illustrate:

B|A3> = BA|3>= (AB+[B,A)|8>
since [B, A] = 0
AB|3 >
B(A|B >)
BIAB >
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One therefore sees that

B|AB >= |43 > (4.14)

Again this implies that |3 > is an eigenfunction of A.

Conversely, if A and B do not commute ([A, B} # 0), you cannot specify
the eigenvalues of both simultaneously (only one or the other). This is the
origin of the uncertainty principle, which we will discuss later in more detail.

To illustrate this locally however, Z and p do not commute.

Proof: (note that when working with operators its easier to have an
imaginary test function to work on. otherwise it is easy to get confused.)

@50 > = (i p)|T >
= zp|¥ > —pz|¥ >
v > d
= —iha ih— (x| U >
thi——— +1 dx(x| )
d|v d|w
= ih|—2 | >—|—x | >—i—|\I’>
dx dx
= (h|U >
Resulting in
Z,p||V >=ih|V > (4.15)
or alternatively that
[z, p| =ih (4.16)

This value is non-zero showing that & and p do not commute. And as
advertised earlier this will lead to the Uncertainty principle

AzAp > 1 (4.17)

Furthermore, given 2 commuting observables A and B it is always pos-
sible to construct an orthonormal basis with eigenstates common to both A
and B.

Additional commutator math

Before we go on we will want to summarize some important commutator
relations
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Examples

Evaluate [p,2?]. Remember to add some dummy wavefunction ¥ to help
out.

p,22|¥ = piz— z°p¥

. . d
where p = —zh%

Therefore we conclude that

[p, 2% = —2ihi (4.18)

Evaluate [p%, #]. Remember to add some dummy wavefunction ¥ to help



out.

Resulting in

s

p,x

(P*& — &p°) U
P22l — p*U
d2

45% [m%(wm] — de(fm)?
—TLQ% {x% + \P} + h%%
—h? {m% + % + %} h%‘%’
—h2 {x% + 2%] + h? Cj%
—h%% — 252% +h2 %
d¥

2h2d_fl
[2#%} T
ERmEAT
—2ihp T

9%, &) = —2ihp

The Uncertainty Principle
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(4.19)

Heisenberg’s Uncertainty Principle follows from a non-zero commutator.
Better yet, we claim that there is an uncertainty principle whenever there

are non-commuting operators.

To illustrate, suppose we have two Hermitian operators A and B such
that [A, B] = iC where C is also Hermitian but iC is anti-Hermitian. Con-

sider the uncertainty

(AA)? =< T|(A — A)(A— A)T >

where A =< A >=< U|A|¥ >. We desire to evaluate the product of the



28 CHAPTER 4. FUNDAMENTALS

uncertainties in A and B

<T|(A-A)(A- AT ><T|(B BB B)|T>
> < U|(A-A)(B - B)¥>< (B B)A_ AT>

This relation arises from something called the Schwarz Inequality. Further-
more we “know” that

(A-AB B) =

(NN NG e

“Proof”

Don’t have any real proof of this equality but we can show that they are
equivalent. For simplicity in notation let A = a and B = b. Remember
though that a and b are just numbers, not operators. Also always remem-
ber to preserve the order of operation when dealing with operators. They
matter.

—a)(B—b)+ (B—-0b)(A—a)+iC

—
—
>

~

—bA—aB +ab+BA—aB —bA +ab+iC]

[ SN N N
S
oy

= 2[AB+BA+2ab—2bA—2aB+ié]

— where iC' = [A,B]= AB— BA

= SIAB+BA+2ab— 20A - 2aB+ AB — BA
| P N N

= 5245+ 2ab — 2bA - 2a5]

= AB+ab bA aB
AB —bA — aB + ab

= (A-a)(B -1

which shows the equivalence of the the two expressions.
So now we know that

(A—A)(B-B)+(B-B)(A-A4)| iC
2 2

(A-A)(B-B)=



or

£
|
>
W
|
El
I
>
+
st

By the same token

(B-B)A A)=F

.
vl

Now using these two relations, the Schwarz inequality becomes

(AA)%(AB)? < U|F + %\p >< \1/\132%\1»

v

Y

(AA)*(AB)?
(AAX(AB)? >

(< U|F|T >2 f% < U|F|T >< U|C|T >

1 . : . )
7 < ¥lo|w >2 +% < U|C|T >< B|F|T >]

+

(AA*(AB)? > |< U|F|T >2 +i < 0|0 >2

Now in the minimum case < U|F|¥ >= 0 such that

(AA)2(AB)? > 1 < 0|C| >2

Let < U|C|¥ >= ¢ where ¢ is some scalar number. Then

such that

29

(4.20)

(4.21)

< U|E|T > +% < U|C|T >][< UET > f% < T|C|T >]

(4.22)

(4.23)

This is the generalized uncertainty principle. Note that if ¢ = % then
we come back to the Heisenberg uncertainty principle for AA = Az and

AB = Ap.
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Motivating the uncertainty principle, not using com-
mutators though

Consider a plane wave of monochromatic light.

6(33', t) x eikm—iwf

where k = 2{ and w = kc
Now generalize this to a linear superposition of different plane waves

E(SU, t) X a ezklfn—v,wlt + a2ev,k2:n—1,w2t 4.

Keep generalizing this and now consider a continuous distribution
e(x,t) ox /e(k)eimmdk

where €(k) is a distribution of k& values. Our job now is to find out what
e(k) looks like.

Recall the Fourier transform relations

e(z,0) x / e(k)e™dk Forward Fourier transform
e(k) o / e(z,0)e **dx Inverse Fourier transform

This shows that e(k) is just the inverse Fourier tranform of e(z,0) which is
the function of the wave in real space.

Now suppose that we put an “envelope” function f(x) on top of our
plane wave to define €(x,0). We really measure in real life the intensity of
the wave.

I(x,0) = |e(z,0)|* o f2(2)

For convenience let’s make our envelope Gaussian with a width of Az.

]

(2,0 o e 37

o x2 o x2
X e 4Ax2 e 4Ax2

22
€(z,0) oc etfoe 1as2 (4.24)

so that
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Now what are the distribution of frequencies for the Gaussian pulse (Find

le(k)[%)? Well

R

/e(x, O)e_’kmdx

. %2 .
/ ezkoze—me—zkzdm
/ ellhok)re ™ Tam dy

22
4Az2

let y = Y such that y? = and dx = 2Axdy
2Azx

/ei(kok)mey2dy(2Ax)
/2Axei(k0k)2Axyey2dy
2Aw/e_7"2Am(k0_k)ye_y2dy

Az /e—2iAm(ko—k)ye—y2dy

call ;2iAa:(ko —k)y =ia

where a = 2Az(k, — k) for simplicity
2Ax /e_mye_y2dy

comp;lete the square in the exponent

i2a2

2Ax/e_[(y+%a)2_ ldy

2Axe# /e(y+%)2dy
let z = (y—l—%) and dz = dy

—0,2 2
2Aze s /ez dz

from our knowledge of Gaussian integrals we know the integral is /7

a2
2Az/me 1
2 e (8570517
2Ax\/7_refAm2(k°7k)2
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Leaving

e(k) o 2Az\/me Av’ (ko—k)? (4.25)

Now |e(k)|? ox e=227”(Fo=k)* Convert this to Gaussian form.

o 288 (ko—k)?  _ 67%
therefore
1
2A2° = ——5
v 2AK?
1
APAR? = -
v 1
or
AzAk =5 (4.26)
Now since
w=ke — Aw=cdk
r=ct — Ax=cAt
you get from the second expression ¢ = % and this can be substituted into
the first expression to get
AwAt = 3 (4.27)
More generally speaking though
AwAt > 3 (4.28)

This is the uncertainty relation for an arbitrary pulse shape. Note also that
E = hw so that one can perhaps get a more familiar looking Uncertainty
relation.

AEAt > 5 (4.29)

We can keep going to get other variations of the Uncertainty relation.
Since p = fik one has Ap = Ak and Ak = 2;37 from the previous uncer-

tainty relation all resulting in Ap = %.

ApAz =1 (4.30)
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More generally speaking though

ApAz >4 (4.31)

This is the general form of the Heisenberg Uncertainty principle that you
will see.

But the main take home message apart from the various forms of the
Uncertainty principle is that short laser pulses contain a lot of colors and
conversely longer ones have less- they are more monochromatic.
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Chapter 5

Schrodinger Equation

The time independent Schrodinger equation

The general form of the Schrodinger equation which we will need to solve
many times is

ih2U(r,t) = HU(r,1) (5.1)

where H is the Hamiltonian operator. Alternatively

hQ

2m

m%mmg:[

V24 V] W(r, t)
where V is some generic potential.

This equation derived by Schrodinger describes the wavefunction of the
particle and hence is pretty important. The general form of the Schrodinger
equation has time dependence as you see above. However if can be shown
that there is a time independent form of the equation also called the Schrodinger
equation. To distinguish these two equations the former is often referred to
as the time-dependent Schrodinger equation. Note that one typically deals
with the time-independent version for the first semester of quantum and
then get into the time-dependent version in the second semsester.

To obtain the time-independent version of the Schrodinger equation as-
sume that V does not depend on time. It is only dependent on position

V — V(r). We have

) h*v?
zha‘ll(r, t) = (— T + V> U(r,t)

35
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Note that the left side has time dependence while the right side only has a
spatial dependence. Look for solutions of the form

U(r,t) = V(r)f()

= W f shorthand expression

We now have

L0 VL
T N U
WU Of 1 [ RV?
F T [ om ‘“V‘I’]

Note that the left hand side is independent of position and the right hand
side is independent of time. Both sides must equal a constant (call it €)
in order to be consistent. It turns out that this constant is the system
eigenenergy which is why we are calling it € already.

Left hand side

ihof
Fo — °
19f €
fot ~ ih
10f  —ie
for — Rm
1€t
nf =~

note that there is a constant of integration

but we ignore it here

This results in

—iet

f=en (5.2)

The form of the function is exponential but it has an imaginary exponent.
So what does this mean? Well, it means that one has plane waves. Note
that e?** = coskx + isinkzx.
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Right hand side

7 2m

22
L [—thj—FV\D] = €

HY = eV

This expression is something that we are familiar with. Its our favorite
eigenvalue and eigenvector problem.
Summary

So putting everything together we have the full form of the wavefunction
(both the time-dependent and time-independent parts).

_ict

U = \Ij(r)e 7i (53)

Recall that additional constraints on ¥(r) include
e U(r) is finite

e U(r) is continuous

e U'(r) is continuous

Furthermore, boundary conditions on the wavefunction will induce quan-
tization on the energies € as well as the mathematical form of the wave-
function. Here you will note that typically the first semester of quantum
mechanics is spent solving the time independent Schrodinger equation for a
number of different situation and boundary conditions. These problems are
referred to as model problems and will be described in the next sections.

What do we mean

What exactly did we mean above. Well let’s go back to the full time-
dependent Schrodinger equation

o
zha‘lf(r,t) = HY(r,t)

where we just found that

tet

U(r,t) =V(r)e =
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Replace this into the Schrodinger equation and evaluate.

. a —iel —eet
zha {\Il(r)e 3 } = HU(r)e =
. 8 _ zet —iet
m‘ll(r)a {e n } = HUY(r)e™s
ih <—l— \Il(r)ef%t = H‘Il(r)efi%

h
i (%) V() = HU(r)

leaving

HY(r)=eU(r) (5.4)

which is the time independent Schrodinger equation or our familiar eigen-
value and eigenvector problem. We will solve this equation a bunch of times
for a number of model systems. Later on we will go back and deal more
directly with the time dependent Schrodinger equation.

Some relevant applications of the time independent Schrodinger equation
include

e particle in a box (absorption)
e harmonic oscillator (vibrations)

e rigid rotor (rotational spectra)
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Particle in a 1D Infinite Box

Picture the following potential with infinite walls. The potential is therefore
o V=o00(x<0)
e V=00<z<a)
o V=o00(r>a)

where a is the width of the box.
The Schrodinger equation is

e O 1 (6.1)

2m dx2

Let’s rearrange this equation a little bit

h? A2V
——— = U
2m dx?
> 2
PY o 2me
dx? h2
d?v
— +kT = 0
dx? *
2
where £? = %
The general solutions to this last equation are
U = Aeikv 4 Be~ihe (6.2)
where it is understood that Ae’** is a left going wave and that e~ ** is a

right going wave. Note that this is because we implicitly have assumed the
—iet
e » part of the full time dependent wavefunction.

39
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Now to get our particular solution we must apply boundary conditions
intrinsic to the problem.
Boundary conditions

e U(0)=0

e U(a)=0

When one applies the boundary conditions we have the following equa-
tions.

v(0) = A+B=0
Tla) = Ae™ 4+ Be ™ =0
From the first expression we have
B=-A
From the second expression and the above result we have

Aev’,kn, . Ae—v’,ka =0

or

eika_efika
204 ——— ) = 0
“(=5 )

2tAsinka = 0

So for this last expression to be true, we either have the trivial solution
(A = 0) or (ka = nm) where n is some integer. Since we don’t want the
trivial solution we are left with

ka =nm
resulting in
k==t (6.3)
Energies
But now recall that we had found earlier that k£ = % Therefore
2me . nmw
R a
n2x2 h2

a? 2m



We then have

€ = n2h?
— 8ma?

Wavefunctions
Now go back and find the relevant wavefunctions
U = A(e’lk"l‘ . e—ikm)

Resulting in

41

(6.5)

| U = 2iAsinka |
Now we must normalize the wavefunction over the interval from 0 — a. Let
N =24
N? / U Udx
0
N? / sin’kxdx
0

1
where sin’kx = 5(1 — cos2kx)

N2 a
— / (1 — cos2kzx)dx
2 Jo

nw
where k = —
a

N2 “a
— {a / cos2kxdaj}
2 0

the integral is zero
N2a
2
N2

We therefore have the normalization constant

N:\ﬁ

Putting it all together, our desired wavefunction is

U = \/gsink:r

Qo -
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Chapter 7

Particle in a 1D Symmetric
Box

Picture the following potential with infinite walls like before but centered
symmetrically about zero. The potential is described by

o V=o0(z<FH)
e V=0(-%<z<%)
o V=o00(x2>9%)

The Schrodinger equation is again

R EY LYY= e (7.1)

This leads to (as done in the previous section)

>0
— + KT =0
a2 T
where k = 2;;”5. The general solutions to this expression are

|0 = Ae'tv + Beibe (7.2)

Now we must apply our boundary conditions which differ from the previous
case

43
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c v (3) =0
Application of the boundary conditions results in the following equations

Ae 8 + BT =0 — A+ Betr =0
Ae'S + Be % =0 —» —A_Beiha—y

Evaluating these two equations results in

Beik:n, _ Be—ik:fl, = 0

6ilca _ 67ika
2%iB | —— =
i ( 5 ) 0

2i¢Bsinka = 0

Energies

So at this point, either B = 0 (the trivial solution) or sinka = 0. Since we
don’t want the trivial solution we have

ka = nw
nmw

ko= —
a
2me nmw
B @
n2n? B2
a2 2m
n2h?

8ma?

€ =

We therefore have the desired energies of the system

R (7.3)

~ 8ma?

Wavefunctions
Now for the wavefunctions. From
A+ Be* =0
(7.4)

we get

B = —Ae
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Introduce this expression for B into

A+ Be ™ =0

to get
Aeikw — Aeiikxe*ika
U= 2ZAe_7% <6ikw€ik2_a — ?ikxe_ik_;>
2i
)
U = 2iAe™ sin [k? (:L‘ + %ﬂ
let N = 2ZAeflk_2a
U = Nsin [k: (I n gﬂ
where recall that k = —— and N is our normalization constant.
a
¥ = Nuin [l c + 3)] 75)

Now we need to normalize the wavefunction.

W [ it [k (w4 2) =1

2

Let y = (z + ) also dy = dx. The limits of integration become
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We have
N2/ sinkydy = 1
0

1
where sin?ky = 5(1 — cos2ky)

N2 a
—/ 1—cos2kydy = 1
2 Jo
N2 a
T[Q_/ cos2kydy} = 1
J0
N2 1 . "
7[a%sm2ky|0} =1
the second term is zero
N o= L
a

Therefore our desired normalization constant is

N=,/2 (7.6)

Putting this all together, our total wavefunction is

=\ /2sin [k (z + )] (7.7)

where k = %



Chapter 8

Alternative particle in a box
problems

Picture the following potential. It’s the same as the first particle in a box
problem. We will solve this problem again but do it slightly differently as
you will see. In the end however, the solutions must be the same. Like
before the potential goes as

o V=o00(x<0)
e V=00<z<a)
o V=00(z>a)

The Schrodinger equation is

B L yy— e (8.1)

Rearrange this to get

h? 20
9m dx?
el 2me
dz?2 72

2me

where as before k2 = =5
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Now rather than last time where we assumed a solution of the form
U = Ae™™ + Be ™" we will assume a general solution of the form

U = Asinkx + Bsinkx (8.2)

Now to get the energies and the particular form of the wavefunction we
must apply the boundary conditions intrinsic to the problem.

e U(0)=0
e U(a)=0

If we apply the boundary conditions we get the following from the first
boundary condition

B=0
Using this and the second boundary condition we learn that
Asinka =0

Energies

So again we are left with either the trivial solution (A = 0) or that ka = nr.
Working with the desired solution we have

ka = nm
nmw
=
a
sme
where k = 7
2me nmw
R a
nm? K2
€ = 55—
a* 2m
n2h?
e —
8ma?

The desired energies of the particle in a box are therefore

e = 220 (8.3)

8ma
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Wavefunctions

Since ¥ = Asinkx we must now normalize the wavefunction.
a
A? / sinZkrdr =1
Jo

1
where sin’kx = 5(1 — cos2kx)

A2 QL
— [/ 1-— cos2kxdx] =1
0

2
A? 1
- {a - ﬂsin2kx|g] =1
A2
Aa_
2
a2 =2
a

leaving us with the desired normalization constant

A=,/2 (8.4)

The total wavefunction is then

U = \/gsmkx (8.5)

which is identical to the expression we had previously.

Probability densities

Example

What is the probability P of locating an electron between x = 0 and x =
0.2nm in the ground state of a 1D box of length 1.0 nm? Use the previously
derived particle in a box solutions.

0.2
P= (Probability density)dz
J0
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where (Probability density) = ¥*¥ = 2sin’kz and where @ = 1 nm.

resulting in

a9
P = /—sin2kxdx
o L

a
= I3 '/0 1 — cos®2kxdx

1 a
[a — ﬁsmmﬂxo}

Sl= =

[a - 2—1k (sin2ka)]

wherek=%andn=1

P =1 [a— 5sin (2%)} (8.6)

Can leave the expression like this if desired. Plugging in the relevant values

for k, L and a we have

P

! 0.2nm — 1'Onmsin 271'B
1.0nm 2 1.0

1 1
o {0.2nm “ 5 (0.9511)]

0.0486
0.05

The desired probability of finding the particle in the specified interval is
approximately 5%.

Expectation values

Example 1

What is the average position, x, of a particle in a box?
Recall that to find expectation values you must sandwich the operator.

<z >:/ U* e Udx
0

where recall that we found earlier that ¥ = \/g sinkz. This leaves us with
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o [ () o)

where we recall that the complex conjugate

of a real wavefunction is itself.

T2
= /—xsianxd:L'
0 a

a

1 a
= - / rsin’kadzx
0
1
where sin?kx = 5(1 — cos2kx)

a
= ——/ z(1 — cos2kx)dx
J0

£U2 a
[— a —/ xcos2kxdx}
2 0

1 a
——/ xcos2kxdx
0

a

We integrate the second term by parts. Let u = z, du = dz. Let dv =
cos2kxdxr and therefore v = ;—ksinka. The integral becomes

¢ x 41
/ xcos2kxdr = | —sin2kz|g — / —sin2kzdx
0 2k o 2k

Since k = ”7: the first term is zero. We now have

1 (1
- — sin2kxdx
Qka 0

1 /1 i
+ 5 <%> cos2kx|g

i 1 2nm 1
—— |cos——a —
4k2q a

<r> =

e e e e

We are therefore left with our final result

<z >=% (8.7)

The average position of the particle in a box is the midpoint.
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Example 2

What is the average momentum p of a particle in a box of width a.
Recall that one must sandwich the operator.

a
<p> = /\Il*p\lldm
0

_ / S <—mi> Dz
0 dx

2
where recall again that ¥ = \/isinksc

a
and that the complex conjugate of

something real stays real.

We have

2 a
<p> = —/ thksinkxcoskxdzx
a.jo
- a
= _2zhk/ sinkxcoskxdx
0

a

and where recall %sin2kx = sinkxcoskzx

hk [°
L sin2kxdx
a Jo

ihk [ 1 .
= — (ﬂ> cos2kx|;

iR
= ;—a(cos2ka -1)=0

The term in parenthesis is zero since £ = 2= We are left with

59

The average momentum of a particle in a box is zero.



Chapter 9

Particle in an infinite 3D box

Basics

Here we illustrate the concept of a “separable” Hamiltonian. The particle in
a 3D infinte box is basically an extension of the particle in a 1D box problem
three times over. The relevant potential is

e V=0if(0<z<a)
e and if (0 <z <b)
e and if 0(< = < ¢)

otherwise the potential is infinite.
Here the Schrodinger equation that we need to solve looks like

2v72
—hv‘IJ—FV\IJ = €U
m
where V =0
h2 2
— v\If = U
2m

where in Cartesian coordinates the Laplacian (V2 or A) is V2 = 86—52 + % +
5—22. We have
z

2 2 2 2
(&) u=c (9.1)

Now note that we can see that the Hamiltonian operator can be written as
a sum of distinct x, y, and z components.

H=H,+H,+H,

53



54 CHAPTER 9. PARTICLE IN AN INFINITE 3D BOX

where
2 2
H, = _h_&_
2m Oz2
52 62
H = ———=—
2m Oy?
2 2
H, = _h_(’)_
2m 022

This means that the Hamiltonian is “separable”. As a consequence the eigen-
function of the entire system is the product of the individual eigenfunctions
if x, y, and z components were considered separately. Furthermore, the
eigenvalue of the system is the sum of individual eigenvalues if x, y, and z
components were considered separately.

Vi = ¥, \ij v,

€tot = €x Tt €y + €

All this means for you and me is that all we have to do is solve 3 individual
particle in a box problems, add the energies to get the total energy and
multiply the wavefunctions to get the total wavefunction. We have

h? 20U

— = = = GT\I;T
2m dx2
h? W,

——— = ¢,V
2m dy? vy
R 20

— £ =¢,0,
o2m dz?

We know from before that the individual solutions are

U, =/ —sink,x

w@%\

v, —sinkyy

U, =4/ —sink,z

e

Ty T
where k, = 2%k, = = and k, = 2%,
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We also know that the energies are

n2h?
€, — 5
8ma
n2h?
€, = —2
Y 8mb2?
n2h?
€., =
2 8mc2

where n, =1,2,3...,n,=1,2,3...,and n, =1,2,3....

Summary

Putting everything together we have

Uy = U, 0,0, = /B sink,zsink,ysink, z (9.2)
and
n2 n2 n?2
Ctot = (—5 + o+ ;5) (9-3)

Note that it takes 3 quantum numbers (n,,n,,n,) to specify the system.

Expectation values

Like before we can find the average value of the position (< r >) and the
average value of the momentum < p > for the particle in a 3D box.
Example 1

Let’s do the average position first. Any thoughts as to what the outcome
must be?

<r>= [ (x,y, 2)fU(z,y, z)dedydz (9.4)

where 7# = Zi + §j + 2k
Let’s look at the x component (< x >) first.

(\/ismk x[sznkuy\/751nk z) x (\/75172]{: x[sznkyyfsznk z> dxdydz

2
= / Zsin’k ydy/ Zsin’k zdz/ x=sin’k,xdx
Jo b Jo a

<z >



56 CHAPTER 9. PARTICLE IN AN INFINITE 3D BOX

Now by normalization, the first two integrals equal 1. We can prove it if
you want

2 [ 21 [°
3/0 sin“k,ydy = 35/0 1 — cos2k,ydy
1 1
= 3 [b - % sankyyO]
=1

Having showed this we have
2 @ .92
<x >=— xsin“kyxdr
aJjo

which we have evaluated previously. Note that sin’k,z = 3(1 — cos2k,)
giving

a
<x> = / x — xcos2k xdr
0

2@ a
[:c_ — / a:cos2kma:da:]
2 0

a2 a
[——/ xcos2kwxdx}
2 J0

1 a
— —/ zcos2k,xdr
0

a .

NI Q= Q= Q=

Integrate this last expression by parts where u = x, du = dx, dv = cos2k,xdx

and v = 2%32’712]{31,:6. We have
a 1 a )
— / sm2kxxdm]
o 2ks Jo
1

1
- — ) cos2k,z |2
2kea (21%) cos2ks [

1
- m(coﬂkma -1
2a

1
— = {isinﬂcwx

<zxr> =
v a | 2k,

NI NS DR R

therefore

<z >=3% (9.5)
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By the same token it can be shown that

<y>=1% (9.6)
<z>=3% (9.7)

Summarizing we then have
<r>=%i+5j+5k (9.8)

which is the exact center of the cube.

Example 2

We can also find the average momentum < p > of the particle in a 3D box

<p>= [V¥(x,y, 2)p¥(z,y, z)dedydz (9.9)

where p = —ihV or p = —ih (i + j i + ki
Like the previous example, we can just do p, and the rest will follow.

<P > = <\/:smk: m[s%nkyy[sznk z) zh— (\/731nk m[sznkuyfsznk z) dxdydz
2 2 2 2
= sin“k ydy sin‘k,zdz sinkyx(—ih)cosk,xdx
b Y c a
J0 J0

The first two integrals are equal to 1 by nomalization leaving

2ih
< Py >= —— sink,xcosk,xdx
a Jo
where %sinka:r = sink,xcosk,x
th ¢
<pg > = ——/ sin2k,xdx
a Jo

i1
- % (27%) cos2k, x|

= ;Za (cos2k,a — 1)
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Therefore
<Py >= (9.10)
By the same token
<py>=0 (9.11)
<p,>= (9.12)

and < p >=<p, > i+ <p, > j+ < p, > k resulting in

<p>=0 (9.13)

The average momentum of a particle in a 3D box is zero.

Degeneracy

Assume as we have above that the lengths of the box are all the same
a = b = c what are the “degeneracies” of the different energy levels?
Recall that

h2
8ma?

where n, =1,2,3...,n, =1,2,3...,and n, = 1,2,3... and that the state
of the system is defined by these three quantum numbers.
The lowest energy state is

€tot = (n2 + "3 +n?)

o (1,1,1)

This state is “non-degenerate”
The next lowest energy state is

o (1,2,1)
o (1,1,2)
o (2,1,1)

Since there are 3 states with the same energy, this state is threefold degen-
erate.
The next lowest energy state is

e (1,2,2)
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e (2,1,2)
e (2,2,1)

This state is also threefold degenerate.
The next lowest energy state is

e (3,L1)
e (13,1)
e (LL3)

Again, this state is threefold degenerate
The next lowest energy is

o (2.2,2)

This state like the lowest energy state is non-degenerate.

So you can gather from the above examples that by “degenerate” we
mean that there are multiple states with the same energy. This degeneracy
arises due to the symmetry of the cube. In the above example, the degen-
eracy can be lifted if the box is stretched along one or more directions in
order to break the symmetry of the problem.

Breaking the symmetry of the problem

For example, let ¢ # b = a and in particular let ¢ = 2a. For the energies we
have the following expression

B2 [n24n? p?
€ot — T — =
8m a? 4q2

h2 2 2 1 2

= Ema? (”w*”ﬁz”z

The states and their degeneracies in increasing order of energy are

¢ (1,1,1) nondegenerate

¢ (1,1,3) nondegenerate

)

(1,1,2) nondegenerate
)
)

(2,1,1),(1,2,1) 2-fold degenerate
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1,1,4) nondegenerate

bl

(1,1.4)

(1,1,5), (2,2,1) 2-fold degenerate
e (1,3,1),(3,1,1) 2-fold degenerate

(1,1,6)

1,1,6) nondegenerate

You can see that there are a fewer number of degenerate states. Breaking
the symmetry of the problems lifts these degeneracies.



Chapter 10

Particle in a sphere

This is a more complicated problem. Two approaches to a solution are
illustrated with one leading to what are know as spherical Bessel function
and the other to a solution involving regular Bessel functions of half integer
order. The Schrodinger equation is

729 4 VU =0

" 2m

The potential is

Vir) = 0ifr<a
Vir)y = cifr>a

In the region inside the sphere where V = 0, this reduces to

—h—2v2\1/ =’ (10.1)
5 =c .
where
10 ) 1 9 ) 1 o
2_ Y (2% —— [ sin(8)— ———— (10.2
v r2 Or (T 3r> i r2sin(6) 00 (sm( )39> TR sin?(9) 0¢? (10.2)

If replaced into the above equation, multiply by 2mr? on both sides to
simplify giving

—h2r2V20 = 2mrle ¥
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Expanded out this looks like

_R2p2 ig 26_\:[! +;2 j (9)8_\:[] _._;82_\11
"\ \" or r2sin(9) 06 T 72 sin%(0) O¢?

= 2mrleU

_h2 2 28_‘11 + L 2 y (9)6_‘11 _|_—1 82_‘1’
ar \" or sin(0) 00 RNE:Y. sin?(0) O¢?

= 2mrleV

Rearrange to give

— 71262 (7"2%—‘1]> — 2mr2eW
r r

of 1 9 ( 9 1L N\ _
— h (sm(@)% (sm(@)%> — sin2(0)37¢52> U=0

where recall that the third term looks familiar. Basically

I? = —n? (sml(e)% <sin(0)é%> - W%a%) (10.3)

(Angular momentum operator). Our main equation then becomes

U .
7h2% (72((?)_7') — 2mrleV + L2V =0

Furthermore, recall that L2¥ = A2](I4+1)¥ (angular momentum eigenvalues)
leading to

0 ov
329 [ 20¥ Y 2 2 _
har (r 87") 2mree¥ + hel(l+ 1) =0
Simplify this

—n? —(r —> — U (2mr?e — R2I(1+1)) =0

0 [ 0¥ 2me , B
E(T E>+\P( o l(l-i—l))—O

Let k2 = % giving

% (ﬂg_‘f) + U (K - 1(1+1)) =0 (10.4)
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At this point there are two ways to proceed from this equation. The first
will lead to solutions involving so called “spherical” Bessel functions. The
other will lead to solutions involving regular or normal Bessel functions of
half integer order. Spherical and half integer order, normal, Bessel functions
are proportional to each other so ultimately the solutions are the same.

Solution with spherical Bessel functions

Let ¥ = 2(r)y(0, ) The we can evaluate the following items using = and y
as shorthand for z(r) and y(6, ¢)

® o T Y%
20V __ 2,
o TS =yYrex

. gr (r 2%‘3) = y(r2z" + 2rz)
Replace the last item into equation 23 giving

y(er” + 27‘1:’) + my(k2r2 —l(l+1))=0
Divide out y and continue simplifying.

rle’ +2re +x(k —1(1+1) =0

Let z = kr (therefore dr = % and dr? = %2. these will be useful in a

moment) and replace into the above expression

r2z’ +ory + :L’(22 —Il(l+1))=0

d’x dz
2
d2 d
k2r? Ork— — (1 0
el dzﬂr(z (1+1)=
or
2LL 200 4z (1+1)) =0 (10.5)

This is the general spherical Bessel equation whose solutions take the form:

z(r) = Aji(z) + Bui(2) (10.6)
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where j;(z) are spherical Bessel functions of the first kind and y;(z) are
spherical Bessel functions of the second kind (also known as spherical Neu-
mann functions written as n;(z)). Note that j;(z) is finite and well behaved
at the origin while y;(2) diverges. So to get a physical solution, one must
drop the spherical Bessel functions of the second kind leaving

z(r) = Aji(2) (10.7)

The equation and its solutions can be looked up in a text like “Handbook of
Mathematical Functions” Abramowitz and Stegun, pg 437. Note that these
spherical Bessel functions are denoted by little j,(z) as opposed to big J,,(2)
which are normal Bessel functions (same with spherical Bessel functions of
the second kind). Furthermore, spherical bessel functions are related to half
integer Bessel functions, a subclass of normal Bessel functions as shown at
the end of this chapter. Examples of the spherical Bessel function solutions
are

¢ jole) = 2202
. ji (Z) _ szzgz) - cosz(z)

. jQ(Z) — 3912?()2) _ 3(30:£z) _ sin(z2)

z

and so forth.

Solution with half integer (normal) Bessel functions

Alternatively assume that the wavefunction has the form ¢ = $(7’)3/(9, ®) =

r

R(r)y(6, ¢) Replace this in equation 24 and start simplifying.

9 [ 20¥Y 22 _
3r<r 8r)+‘~1’(kr (l+1))=0

We need the following bits of information
()

200 _ !
o TSI = —TY +TYT

.« 2(r

25—‘1’) = —x,y + x”ry + m'y = x”ry

or
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Replace the last item into our main equation
z ry—|— (k:2 2_ l(1+1)) =
Get rid of y

ra’ + S22 (1 +1)) =0
"

RSN

Now let z = kr and z = /z¢(2) (dr = %) giving

d? E2(1+1
[ ) <k2 - #) —
z z
Use the following bits of information
/ 1
[ g—z = \/EQZS +¢§Z 2
1 -1 1y —2 R
o« B3 =z +0 b+ (o(-3) Eraig)

o L5 =3 4ot jert
especially the last term to get

2
k2 (x/Zd)H + d)/z_% - %z_%> +Vz¢ <k‘2 _FI+ 1)> =0

22

Drop k2 and continue simplifying

Va4 o' - 2+ vao (1

26" + 26 - % + 22

z¢”+¢’4i:+z¢(1 =
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Note that the term in the inner parenthesis is equal to (l + %)2 This simpli-
fies the full expression to

1 2
z2¢”+z¢>’+¢>(z2 (z+5> ) =0

Letn:(l-l-%)

220" + 26" +¢(22 —n?) =0 (10.8)

This is the normal Bessel function equation. In this case where we have half-
integer orders n then general solutions for ¢ are linear combinations of half
integer Bessel functions. Furthermore, since z(r) = /z¢(z) and R(r) = ﬂTQ
the general radial solution, R(r), is

¢(z) = AJdn(z)+ BJ,(2)
2(r) = \/E(A'Jn,(z)—irB'm(z))

R(r) = X (A'Jn(z) + B'Yn(z)> (10.9)

or more explicitly

2(r) = /2 (AJ(H%) (2) + BY(H%)(z)) (10.10)

We can look up the equation and its solution in a book like Abramowitz
and Stegun but since Y;, diverges near the origin so it should be dropped
immediately. This leaves

R(r) = = J141)(2) (10.11)

S

Summary

So in the end, regardless of how you came to the solution, to find the eigneval-
ues we need to find the roots, a, of either

Ji(kr) = 0| spherical Bessel (10.12)

J(H%)(kr) = 0| half integer Bessel (10.13)
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So on finding the root one also has a = kr and from this the desired value
of k. Note that for each value of { there are an infinite number of roots. The
eigenvalues are then

ka = «o
2me
2= @
h2a?

2ma?

leading to

K2k2
€= 2m

e = 12 (10.14)

2ma

Finally, the relation between spherical Bessel functions and half integer

Bessel functions are:
j = —J 10.15
jl(z) 2z (H%) (Z) ( ' )

™

y=mn(z) = ﬂY(H%)(Z) (10.16)

So either approach to solving the problem is valid. Its your choice on what’s
most convenient.
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Chapter 11

Harmonic Oscillator:
Analytical approach

Start with the time independent Schrodinger equation
HYU = eV

where H = —2Y2 4 V(r). For simplicity consider only a 1D problem. We

2m
have on rearranging the Schrodinger equation.

272
(T tv)v =

2
( %d(fz—l—V)‘lf = eV
(—%%Jﬂ/—e)xp = 0
(dd; 27?(‘/_6)>\I’ -0
<%+2h_?(€_v)>‘l’ =0

Now to continue simplifying things let
e r = ay where « has units of distance

e ¢ = B¢ where 3 has units of energy

o V = %mwa where w = %

69
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e k is a force constant, m is the particle mass

42 1 42
Al R g g2

Putting everything together we have
1 d> 2 1
< + m(ﬂs — —mw2m2)> U =

a?dy? | n? 2
1 & 2m mw?oy? ]
bd—yz i G ]
d? 2mao’ mw?oy? 7
[d—yz+ pr (e —5 )| ¥ =
>  2ma?Be mPwlaty?] v -
A R B
Define o« and (3 now such that
2mpBa? 1
My =
2,2
m, ;2 (J’,4 — 1

When you make these changes the equation we obtain is

A te—y?| =0

This is the equation that we will solve.

Brief aside, units

First evaluate «

m2wla?
o T
4 h?
@ = 53
miw
h
o = —
mw
leading to
o=/
mw

So now what are the units of a?

(11.1)

(11.2)

(11.3)

(11.4)
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e h—>j-s

e m — kg

ow—)sf1

From this you find that « has units of length. This is the natural lengthscale
of our problem.

Next for g
2mBo’?
o !
2m@B h
2 — = 1
R4 mw
26
2 -
hw
leading to
B =1L (11.5)

Now what are the units of 37
e h—j-s
o w—s!

From this you find that 8 has units of energy. This is the natural energy
scale of the problem.
Now back to our original problem. We left off with

(;-;Jr(s—y?))m:o

Try a general solution to this equation of the form

y2

U(y) = f(y)e” 7 (11.6)

where it will ultimately be seen that f(y) are Hermite polynomials.

Let’s plug this general solution into our above expression and see what
we get. Looking ahead we will need to evaluate some second derivatives.
Let’s do this here ahead of time.
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First derivative

Swe 5] = FpEe t +F e s
= *f(y)ye’% +f’(y)e*§

The first derivative is therefore

d¥(y)

)~ (yf) + £ e (1.7)

Second derivative

Now go and find the second derivative.

d¥(y)

2l =t + £ Wle s (e + uf )~ £0)+ £ W)l

N

Y

= [Wfly) —vf Wle T +[-yf () — f) + f (e =

yielding our desired second derivative

N

Y

YD = [f"(y) ~ 20f () + (> D]e T (11.8)

Now back to our original expression.

657\5 +(e—9y)T = 0
F'@) 2wl )+ @ DI e TP fWe T = 0
Fo)—2f W)+ @ - D@+ —y)fly) = 0
') —2uf () - fy) +efly) = 0
f=29f @)+ (- Df(y) = 0
now define (¢ — 1) = 2n
This results in the following equation
F(y) = 2yf (y) +2nf(y) =0 (11.9)

There are many ways to solve this equation. One common approach is via
a series expansion.
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Let’s pursue a power series expansion (polynomials). Also note that we
have even and odd solutions by symmetry.

o0

fily) = ) azmy™ even
m=0
o0

fy) = ) sy odd
m=0

f1 (y) = Z a2my2m
m=0

fy) = D agm2my’
m=0

A = Y am2m@m 1)
m=0

Recast the last expression in terms of powers of y>™

fi(y) = Y azmra(2m +2)(2m + 1)y*"

m=0

This equivalence can be checked explicitly
Now plug the above expressions for the first and second derivatives into

our original expression
£l (y) = 2uf1(y) +2nfi(y) = O
Z azm+2(2m + 2)(2m + 1)y — Z 2a9,m2my>™ + 2n Z asmy?” = 0
m=0 m=0 m=0
Consolidate coefficients of y>™ yielding
Z[CLQm-}—Q (2m + 2)(2m + 1) — dag,,m + 2na2m]y2m -

Ok, either we have the trivial solution y = 0 or the coefficients in brackets
must be zero. We do not want the trival solution so therefore

[a2m+2(2m + 2)(2m + ].) —4dasy,m + Znan] =0
a2m+-2 (2m + 2) (2m + ].) — (4m — 27’1/)&27” =0
a2m+2(2m + 2)(2m + 1) = (4m — 27’L)CLQ,,,L

2(2m — n)ag,
a2, =
22 (2m + 2)(2m + 1)




TACHAPTER 11. HARMONIC OSCILLATOR: ANALYTICAL APPROACH

The even coefficients are therefore
(2m — n)az,
m+1)(2m +1)

Do the same for the odd functions

oo
) = ) ampy™ "
m=0

fé(y) = Z az2m-+1 (2m + 1)y2m
m=0

foly) = D agmer(2m+ 1)(2m)y*"
m=0

Recast the last expression in powers of 2m + 1

m=0
The equivalence can be checked explicitly.
Replace the above expressions for the first and second derivatives into
our original expression.

£2 () — 2yf5(y) + 2nfa(y)

Z aam+3(2m + 3)(2m + 2)y2m+1 — Z 2a2m+1(2m + 1)y2m+1 + Z 2na2m+1y2m+1

m=0 m=0 0
Collect all coefficients of 32 +!
o0
Z [agm13(2m 4 3)(2m + 2) — 2a9,,41(2m + 1) + 2nag, 1]y*™ ' =0
m=0

So at this point we either have the trivial solution y = 0 or the coefficient
in brackets is zero. Clearly we do not want the trivial solution leaving

agm+3(2m + 3)(2m + 2) — 2a2m+1(2m + 1) + 2nazmy1 = 0

azm+3(2m+3)2m+2) — (22m+1) — 2n)agmer = 0

aom+3(2m +3)(2m +2) — 2[(2m + 1) — nlagmer = 0
agm+3(2m +3)(2m+2) = 2[(2m+1) — n]azmi

The odd coefficients are therefore

2[(2m+1)—nlagm
a2m+3 = [((2,,71*;3))(2,1;2)“ (11.10)
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Summary
am42 = % even (11.11)
Qo y3 = B laze) 644 (11.12)

For the power series to converge the coefficients ag;,+2 and ag,,+3 must
go to zero. n is an integer in either case.
Since previously we defined
(e—1) = 2n
e = 2n+1

1
= 92 Z
€ (n—i—z)

But recall also that we defined € = ¢ yielding

€ = 2ﬂ<n—|—%>

h
and g = 7{4} giving
hw 1
= 9= —
= 2(3) ()
The desired energies are
e="hw(n+3) (11.13)
where n = 0,1,2,3.... These are the energies of the harmonic oscillator.

Now we need to find the wavefunctions.

o0
fi (y) = Za2my2m
m=0

[e @]
f2(y) = Za2m+1?/2m+1

m=0

These even and odd solutions turn out to be Hermite polynomials. In gen-
eral, the wavefunction looks like

U(y) = f(y)e’g
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Putting it all together we have

[V

Yy

U, (y) = AH,e™ T (11.14)

where A is a normalization constant. These are the wavefunctions of the
harmonic oscillator. If we express it in real units.

1 mwa?

U, (2) = (22)7 e 3 (nl) e "5 H, (\/22ax) (11.15)

where n =1,2,3...



Chapter 12

Harmonic Oscillator: raising
and lowering operators

This is the ladder or raising and lowering operator treatment.

The Hamiltonian is

21
H = §—m+§mw2x2

where V(r) = 3mw?z? and where w = (/£ k is the force constant and m

is the mass.

H= 7%% + gmw?a? (12.1)

»”

Now rescale both the energy and length over to “intelligent” units.

r — ar

e — fe

Here o has units of distance and 3 has units of energy.

Replace these new variables into

HU = eV

7
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yielding
R A2 1,
(%@_"im‘u x >\I/ = U
RE 1N 1 5 5,
p el B @—kimwaaz U = (U
1 AR /1\ & 1 T
B |:% (E) % -+ 57’]’%{)20[23'32 \I' = E‘I’
h? 1 d? n 1 m2w?a’z? T - e
ma?B | 2dx? 2 n? - ¢
h2 1 d2 2 2,2 4N\ 7
532 | 573 T i w2a v = 0¥
ma?f | 2dx 2 h ]
Now define
L =1 (12.2)
mlutel =1 (12.3)

From these two equations we obtain

124)

o=/ (12.5)

Now back to our original problem. Using T?j?ﬁ = 1 and %;ﬁ =1 our
expression becomes

1 d? z?

—— 4+ — |V =cU

[ 2 da? 2] ©
or HU = ¢V where
2 :22
H=-34L, +2 (12.6)

This is our new Hamiltonian.
Now we introduce our raising and lowering operators (also called ladder
operators).

2(x+ip) (12.7)

KR
%
al = %(x —ip) (12.8)
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where @ is the lowering or annihilation operator and a' is the raising or
creation operator.

At this point we will need some additional pieces of information. First
in our intelligent units A = 1 so the commutator between position and
momentum is

[2,p] = ih — [z,p] =1

Let’s check to refresh our memory on commutators

Brief aside

[z, p]|¥ >= (zp — px)|¥ >

where VU is a test function. Recall that when working with commutators its
easiest to use a dummy test function so you don’t get confused.

dv d
= —xith— +ih— (2
T T dz ()

A av
= th|—z— — 4 v
t xdm+wdaj+

= h¥
= 4h|T >

So in our case i =1 and [z,p] = i.
We will also need (a'a)

dla = Z(x—ip)(z+ip)

2% +iap — ipx + p°]
[2® 4+ p* + iz, Pl
2%+ p® + ()]

2% +p* 1]

22
2

|,

NN

AN P =N =N =N =
+

Il

=

|
DO =
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Therefore

Alternatively

ala=H— 3 (12.9)

H=a'a+3 (12.10)

Let’s now define the “number” operator N

so that

(12.11)

H=N+3 (12.12)

We will need some more commutators

First, [a,al]

[a,a]

Therefore

%[m—}—ip,m — ip]

2@+ ip) (@~ ip) — (2 — ip) @ + ip)]

S —iop+ipw +97) — (&% + sap — ipw + )
%[(—ixp +ipz) — (izp — ipz)]

%[(px — xp) — (zp — px)]

5P ) ~ [.]

sli—d

5(-20)

1

la,af] =1 (12.13)
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Second, [al,a]

Likewise, it can be shown that [af,a] = —1
1 . .
= ;ll@—) (z+ip)

— %[(x — ip)(z + ip) — (z + ip)(z — ip)]

B %[(:ﬁ +iap —ipx + p?) — (2 — dxp +ipz + p?)|

= %[(z:}:p —ipx) — (—izp + ipx)]

— Llap—p2) — (o — 2p)

= %ux,p} ~ [p,a]]

= 5,[1 — ()]

- %(2@)

= -1
Therefore

lata] = 1 (12.14)
Third, [N, d]
[N,a] = [a'a,d]

Here we invoke some important commutator relations

la,bc] = [a,blc + bla, ] (12.15)

lab,c] = alb, c] + [a,c]b (12.16)

where we just showed that [af,a] = —1

Therefore
[N,a| = —a (12.17)
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Fourth, [N, a']

Likewise it can be shown that [N,a'] = af

= Jlala,al]

= a'fa,a’] + [af,a'a

Therefore

[N,a'] = af (12.18)

Eigenvalues of N

Now let’s go find the eigenvalues of N. Assume that there exists an eigenstate
of N denoted by |n > with an eigenvalue A,

Nin >= \,|n >

Claim that
N(aln>) = (A, —1)(aln>)
where we call [n' >= a|n >
Nin'> = (A, —1)n' >

That is \n/ > is also an eigenstate of N but with an eigenvalue decreased by

W

one energy unit. In other words, “a” acing on |n > results in an eigenstate

whose energy is lowered by one energy unit (“a” is a lowering operator)
Proof:

N(ajn >) = Naln >
= (aN +[N,d])|n >
= (aN —a)ln >
where [N,a] = —a

= aN|n > —aln >

ai,|n > —aln >
a(X, —1)n >
= (A, —1aln >
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therefore

N(aln >) = (A, — 1)(a|n >) (12.19)

By the same token, a' is a raising operator.

N(af|n >) = Na'|n >
= [a'N +[N,a"]|n >
= (a'N+a)n>
where recall that [N,af] = a
= a'Njn > +d'|n >
Aal|n > +al|n >
= (A +D(a'|n >)

resulting in

N(af|n >) = (A, + 1)(af|n >) (12.20)

We can apply a and a' as many times as we like

N(a™|n >) = (A, — m)(a™|n >) (12.21)
N(a™ |n >) = (O, +m) (@™ |n >) (12.22)
But there is a lower bound since V(z) > 0 and N = H — 3. So N is

bounded below. We will use this to our advantage especially when finding
wavefunctions.

Nj0> = 0/0>=0

or
a0 > = 0
terminates the ladder.
Since
Nin> = XM\n>
Nin> = n/n>

In this respect, N is called the number operator because its eigenvalue gives
the integer number of quanta of vibrations in the harmonic oscillator prob-
lem.
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Also sinceHzN—i—% and HU = ¢U

Hn> = (N+3)n>
= nln> +%|n >
= (D>
2
leaving
1
e=(n+ 5)
in our intelligent units.
Recall € = B¢ where 8 = Aiw
e=hw(n+3) (12.23)

andn=0,1,2,3...

Now that we have the energies we need the wavefunctions. Use
e a|0>=0

+ o= Jyain) = 35 (4 +2)

where recall that p = fi% in our intelligent units.
al0> = 0
1 d
— (= U =
AlEre)r -0
1 [d¥
~ (L) =
sl ) =0
dv
= - U
dx “
A
T -
2
x
leaving
22
Uyg=Ce 2
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where C is some constant of integration.

22
0>=Ce 7 (12.24)
Now we must normalize the ground state wavefunction ¥*¥ = 1 or
<0/0>=1
<00> = C? /ded:p =1
= C?yr=1
therefore
1
c? = —
NS
1
1\ 1
- )
T
L g2
0>=(1)%e 2 (12.25)

in dimensionless units. With units back in we have

0 5= (m2)T e H (12.26)

where a2 = (%)

Now to get higher eigenstate wavefunctions we will apply a'|n >= C,|n+
1 > where (), is a constant and can be found by as follows.

Find C,
a'ln> = Culn+1>
lafn > = Culn+1>
<a'nlafn> = C2<n+ln+1>
C? = <nlaa'ln >
where recall that aa’ = (a'a + [a,a'])
C? = <nla'a+a,al]n >
and that [a,a'] =1 also N = a'a
C? = <n|N+1n>

= <n|Nn>+ <nln>
= n+1
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so that
C,=+vn+1 (12.27)
therefore
afln >=vn+1n+1> (12.28)
Find C,,_4

Since we're here, let’s do the converse and through normalization find C,, 4

ajn> = Cyqln—1>
an> = Cp qln—1>
<anlan> = (C, 1)?<n—-1n—1>
C?_, = <mnlataln >
where recall that a’a = N
C%? , = <n|Nln>
0721,—1 = n
leaving
Cor =+/n (12.29)
aln >=+/nln—1> (12.30)

Now back to our original problem which was to find the wavefunctions. We
will employ the relation an|n >=4/n+ 1|n + 1 >. Rearrange it to look like

In+1>= - a'ln >

So you can see that if you have one wavefunction, you can find the one above
it and continue in this fashion to get all other wavefunctions. So starting
withn |0 > we get |1 > as shown below.

1> = a'l0>

25 = Latps= Lo
V2 V2

etc. ..

> = ——(a)"0>
Vn!
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V() = o= (v — )" [(%)ie_T] (12.31)

It turns out that this is another way of writing the Hermite polynomials.

Summary

So to summarize, here is a recap of useful identities. In units where m =
w = h = 1 and with the energy in units of Aw and the length in units of
h

mw

H=2 12 (12.32)

a = —=(z +ip) (12.33)

al = —=(z —ip) (12.34)

T = %(aT +a) (12.35)

p= 5"~ a) (12.36)

[z,p] =1 (12.37)

la,a’] =1 (12.38)

(12.39)
H=N+3 (12.40)
Hin>=(n+3)n> (12.41)
afln >=vn+1ln+1> (12.42)

aln >=+/njn—1> (12.43)
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Chapter 13

Rigid Rotor

The classical angular momentum is L = Iw where [ is the moment of
inertia, w is the angular velocity, I = ur? where u is the reduced mass

( = (nTllf:er)) and r is the separation between the particle of reduced mass
and the origin.

Quantum mechanically since there are no external forces in this prob-
lem (no potential energy term) the Hamiltonian operator is just the kinetic
energy operator.

AV

H =
2p

and

2
V2—1a<28>+ ! 3<sin9£>+ L9

“ 2o\ or r2sin6 96 00 r25in26 8¢?

This is the Laplacian in spherical coordinates.
Since r is a constant there is no need for — - (r2ﬁ).
r2 Or or

The Laplacian therefore simplifies to

21 0 (.69 1o
V= r2sinf 00 Smeae +r2sin29 O¢?

89
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Then the Hamiltonian becomes
h? 1 9 3, 1 02
H = —— — inf— _—
2u [7"252'719 o0 (sm 89) * r2sin26 ngQ]

_ P[0, L &
= T ouw? | 5696 \*"" 00 ) T sin20 642

where recall that T = pr?

[ 1 9 /(. 09 Lt 9
—— — | sinf— —_—

21 | sinf 06 00 sin26 O¢p?
Note that the expression in brackets is really the quantum mechanical an-
gular momentum operator.

L2 = —12 | 5% (sinb %) + iy | (13.1)

s1n0 sin26 O¢?

Now we have

2
H=-L% (13.2)

for the rigid rotor.

The time independent Schrodinger equation we derived earlier is just an
eigenvector eigenvalue problem HU = e¢U where the wavefunction ¥ (6, ¢) is
a function of both 8 and ¢. We have

06 sin26 H¢2?
Multiply both sides by sin?6

21 | sinf 06

21 00 00

27
Multiply both sides by 2 to clear the front of the left hand side

R_Q{ L 3<smeg>+ L 82]‘11(9,@ = €0(0,9)

2 2
—h—[sine3 (sin92> + %]‘I’(G, ¢) = esin®0T(8,0)

AN, 9? 2l
{517%9% (szn0%> -+ W] \11(0, ¢) = *?Sln 9@(9, QZS)
21e
Let /8 = ?
9 (. 9 82 Ly
{smﬂﬁ (szn9%> + W] U(h, p) + Bsin“0¥(0,¢) = 0

Apply the method of separation of variables to evaluate the last expression.

Choose ¥ (6, ¢) = ©® = TF (for shorthand).
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Replace this into our previous expression

0 0 o2 9
{smG% <sm969> 8¢2} TH+ Bsin“0TF = 0

0 . O(TF) O (TF) 9
smO% (sm@ 20 )-1— 952 + Bsin“60TF

Il
o

As an aside

8%(TF)
96

note that 7" doesn’t have a ¢ dependence

557 36 96
PF
942

From this we can go back to our original expression and get

o[ . OF or PF . 9
sm«9% [sm@( 69+F69>]+Ta¢2+ﬁsm9TF =0
oT PF .9
89] T—-I-ﬁsmHTF =0

D2

15)
san% {szn@F

0 oT O?F . 9
sm@Fae (sm9%> +T3¢>2 + Bsin“0TF = 0

divide by T'F to simplify
sinf 0 < in 98_T> 1 8’°F

T 00 o5 ) T Fag T = 0

Notice that you have one part that depends solely on € and another that
depends solely on ¢

sinf O . or o, 1 82F
T 20 (sm9%> + Bsin“6 = —FW
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Since they are equivalent they both must equal a constant. Call the constant
m? for convenience.

s’}w % (sin@%) + Bsin?0 = m? (13.3)
_%%F = m?2 (13.4)

Solve the second equation first.

d*F

W—FmQF:O

A general solution of this is of the form
F = qe™?

By continuity

F(¢) = F(¢+2m)
F(¢p+2n) = ae™P+2m) = F(¢)

aelm¢)ezm2ﬂ' — ae’bm¢
therefore
ez’m,27r = 1
€M™ = cos2mm + isin2wm = 1

To be true the restrictions on m are m = 0,+1,+2,4+3. ..
Now go back and look at the second equation.

Slng 3 . 6T . 2n )
T 50 (sm9%> + Bsin“0 =m

Let = cosf, 22 = cos®6. Now relabel T as P which is a function of x.
From this we have 1 — 22 = sin26 and also v1 — 22 = sinf

e O T2 a1 - a?) =



dr

do

dr.  __
sinb

Now we have = —ginf and then df = —

inh-d
—sind -

~(V1-a2)(V1-

. [m—< Vima)]

(-t o -5 |

d’P 4P 1
(1—2%) {(1 T )dx2 d:zj( 250)_
d2p dP

2 2

giving

=
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_’]T then ﬁnally

+[B(1 — 2®) — m’|P
+[8(1 —~ 2?) — m’|P
+[8(1 — 2®) —m’|P

+[8(1 — 2®) —m?|P

divide out (1 — z?)

2dP_ dP
da? 2 +

(1—

B | P

=0 (13.5)

This is called Legendre’s equation or actually the associated Legendre dif-
ferential equation. In Abramowitz and Stegun the definition is

(1— a2 )—%—Zxﬁ-i-{l(l-i-l) S

il

y=0 (13.6)

if { is an integer then the solutions P;"(z) are called the associated Legendre
polynomials. If [ is not an integer then the solutions are called the Legendre
polynomials of the 1st kind. We will deal with the former.

Now clearly we want 8 = [(l + 1) but let’s show that explicitly.

AP dP m?
1—a2?)— — 22— ——F=|P=0
( x)dch :de—b—[ﬂ (1—:62)]
Consider the case m = ( yielding
d’pP dP
(1— 2?2 )d 5 —2x%+ﬁp—0

Consider that P can be represented as a polynomial in powers of & (or A, or

whatever you want to call it)

P = Zak:ck
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where & = 0,1,2,3...(k — 1),k.
the above equation.
dP
dx
dP

20— =

dx

Now get the second derivative

er
dx?

CHAPTER 13. RIGID ROTOR

Z akkxk_1
Z 2akkxk

Now plug this power series solution into

= Zakk(k — 1)2*2 in powers of £* 2

= Zak+2(k + 1)(k 4 2)2* in powers of z*

Replacing this into our original equation we have

d’>pP

2
(1—= )—dx2
P ,d’P
a2 L da?

Keep things in powers of z*

dP

— 2r— P
xdx +6

dP

—2z— + QP

dx

Zak+2(k +1)(k+2)z* — Zakk(kz —1)zF - Z 2akz’ + /BZakxk =0

Note that everything is expressed in terms of z*. Collect its coefficients.

> lagi2(k+1)(k+2) — ark(k — 1) — 2axk + Bag)z* =0

So either x = 0 (the trivial solution) or the coefficients in brackets must
equal zero. Like always we do not want the trivial solution. Therefore

ap+2(k+1)(k+2) — apk(k — 1) — 2ark + Bay,
apo[(k+1)(k+2)] — ap[k(k — 1) + 2k — 3]
apro[(k+1)(k+2)] — ax[k® — k + 2k — ]
ap2[(k+1)(k+2)] — aglk(k+1) — 3
apr2|(k+1)(k +2)

This yields

Qk42 =

aplk(k+1)—F]

IGDIGDE

o
o o o o

apk(k+1) = j]

(13.7)
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alternatively

a _k 3
(%) = #z — wrier (13.8)

As k — oo we have ("—fl‘:—z) — 1. To have this power series converge ag12 —

0. So with ag42 =0 we have

k
E+2  (E+1)(k+2)
B
A
(k+1)
we therefore have
B=k(k+1) (13.9)
replace k with {
B=I1l+1) (13.10)

where [ =0,1,2,3....
Ok, now that we have this result let’s go back to our main equation.

d’P dP m?
— 22—+ |I(1+1) — T2

P 2 —
1-2 )de dx

P=0

whose solutions are called associated Legendre polynomials. Recall also that

8= % resulting in

Solving for € we have

R21(1+1
e = BUD) (13.11)

These are the energies of the rigid rotor problem where againl =0,1,2,3....

Now note that we want our associated Legendre polynomials as a func-
tion of @ instead of . Recall that x = cosf. Skipping a lot of work we
have

21 +1(1— [ml)!
4 (I + |m])!

\11(07 QS) = }/;Tn(e, ¢) = |: :| 2 lTn(COSG)eim'(ﬁ
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Here U (6, ¢) = Y;™(0, ¢) are called spherical harmonics and have the func-
tional form

1
7(6,0) = [ %2 | P cost)e (13.12)

These are our desired wavefunctions.

R21(14+1
¢ = HIHT) (13.13)

These are our desired energies.



Chapter 14

Selection Rules

Harmonic Oscillator

Derive the selction rules for transitions between vibrational levels of a mole-
cule modeled as a harmonic oscillator. Neglect rotational transitions. These
rules govern the absorption of infrared radiation.

Expand p about the equilibrium nucleus separation.

Ou
N—MO‘F(a—qu)—F...

Ignore higher order terms.
The transition dipole moment is

<n|pn >

/ 8,LL
<nlpo + H-gln >

9q

’ 3/L ’
<n|poln >+ 5-| <nlgn>

0q "

’ 3/,(, i

,u0<n|n>+a— <nlgln >

q0

The first term is zero unless n = n' and to evaluate the second term recall
that g  (a + a') (raising and lowering operators)

= const <n'la+afln >
= const[< nflaln > + < n|af|n >]

where

97
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e aln>=/njn—1>
edfln>=yn+in+1>

this leaves
= const[const < n'|n — 1 > 4const <n'|n+1>]
So to be nonzero

141)

This is the desired selection rule for the harmonic oscillator.

Rigid Rotor

Derive the selection rules for transitions between rotational levels of a het-
eronuclear diatomic molecule. These rules govern the absorption of far in-
frared (microwave) radiation.

Treat the molecule as a rigid rotor.

W(0,6) = V"(6,6) = [L,m >
By symmetry the dipole is oriented along the molecule.
= tp(cospsinf + singsindy + cosbz)
Assume 2 polarization for the field to make life easier.
U= pocosfz
The transition dipole moment is
<U,m'|pll,m >x< I',m/|cosB|l,m >

Now we make use of a relation

m I—I—m—H [ m+1 m l—l—m I—m m
cosfV;"™ (6, ) = | LRty (8,0) + [ G Vi (6, 6)

(14.2)
Therefore

cosf|l,m >=a|l +1,m > +bll — 1,m >
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where
_ l4+m+1)(—m+1)
“ = @+ 1)(20+ 3)
, \/(z+m)(z—m)
20+ 1)(20—1)
leaving

<U,m/|[a)l + 1,m > +b]l —1,m >]
=a< l/,m,|l—|—1,m> +b < l/,m/\l—l,m>

To be nonzero

These are the desired selection rules for the rigid rotor.

Rovibrations

Now consider rotational/vibrational transitions of a molecule. Here we are
concerned with mid-infrared absorption from the ground vibrational level
to the 1st excited vibrational level with changes in the rotational energy.
Derive the selection rules for these transitions.

Assume Z polarization for simplicity.

¥ >=|n>|l,m >
and where

w = p(q)(cospsindi + singsinfy + cosbz)

I

)
q0

wlg) = <M0+a—

we consider only the first two terms in the second expression. This leaves

= (po + const - q)cost
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The transition dipole moment is then

<l',m'| <nlpn>|l,m >
= <n'|u(g)|n >< I',m'|cos|l,m >
= < n'|uo+ const - gn >< I',m'|cosB|l,m >
= [<n'|poln > +const < n'|gln >] < I',m/|cos|l,m >

The first term is zero unless n = n' and recall that ¢ o (a 4 af). So from
the second term in brackets we get the selection rule

An = +1 (14.5)
Next we look to the angle dependent term
<1',m/|cos|l,m >
where
cosf|l,m >= const|l +1,m > +const|l —1,m >

This yields the additional selection rules

(14.6)
a7
Summary
An =+1 (14.8)
Am =0 (14.9)
Al =+1 (14.10)

In general Am =0, +1



Chapter 15

Potential Step

The Schrodinger equation to solve is

B LYy = (15.1)

Our general strategy will be to solve the equation piecewise. We will
solve it for region 1 then region 2 and then paste the two parts of the
wavefunction together at the interface between regions 1 and 2.

Region 1 (V=0)

1 .
om dz? | ©
d>U 2me
dan = h2 v
d>v 9
W + kU = 0
where k% = % and k = % The solutions of this last equation in
general is
Uy = Ae'™ 4 Be™*7 (15.2)
Region 2

Next we solve the Schrodinger equation in region 2. Here there are two
possibilities. Either the energy of the particle is larger than V (e > V') or
its less than V (e < V).

101
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Case (e < V)
For brevity we just consider one case.
R? 2V
——— =+ VU = ¥
2m da? * ¢
h? 20
A B At/
2m da? (e=V)
2V 2m(e— V)‘I,
da? 12
2T 2m(e—V)
v =0
dx? * 12
v 2 -
B m(V —¢) T o= 0
dx? 12
2m(V — e
Let 52 = —(h2 )
a2v
w PY =0
The general solutions to this last equation are
Uy = CeP” + De=F* (15.3)

Now we need to paste together the two wavefunctions using the so called
matching conditions.

01 (0) = Us(0) (15.4)

¥} (0) = T(0) (15.5)

This will lead to the following equations.
A+B = C+D

ikA—ikB = /BC—/BD%A—B=%

i
However we can’t have our wavefunction ill behaved. It must be finite

valued. So can’t blow up in region 2 which defines one of the coefficients.

(C=0) Now we will solve for A and B. First do A.

(C—-D)

A+B = D
B
A-B = ——D
ik
yielding

_ g
24 = (1—%>D



giving

Next solve for B

giving

A=2(1-%)
-A-B = -D
g
A-B = ——D
ik
yielding
p
9B = —[(1+2
(15
B=§(1+§)

The fraction of particles reflected is

_ w/B? _|B? B*B

B v1|A2_‘Z A*A

_ w(es) (1-8)
() (o

I )
=

=1
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(15.6)

(15.7)

Since R+ T =1 we find that T' = 0. No particles make it through the
step even though it can be shown that there is a nonzero probability for
finding the particle in the forbidden region.
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Chapter 16

Potential Barrier

There are two possibilities here (¢ > V') and (e < V). We will consider the
first case here

Case 1 (e >V)

Assume a source of particles on the left only. What is the behavior of the
wavefunction. What is the transmission coefficient T' = ‘% ‘2. To begin with,
we have the following wavefunctions in regions 1, 2, and 3.

U, = Aeik:p _|_Befikx

Uy = (O 4+ De i

\113 — Feik:r + Gefilc:r

Since there is no source of particles on the right, G = 0. This leaves

U, = Ae® 4 Be
Uy = (O + De i
U = Fe**
where k£ and ¢ are
2me
FE
2m(e — V)
¢ = 72

Recall now that we must apply the matching conditions to merge the wave-
functions at the different interfaces.
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o U (0) = Uy(0)
o U}(0) = 5(0)
o Uy(a) = U3(a)
o Uy(a) = U3(a)

Using the first two matching conditions we get

A+B = C+D
ikA —ikB = i¢C — i¢D

leading to

A+B=C+D| (16.1)

A-B=%2C-¢D (16.2)

Using the second two matching conditions we get

Ce'?® 4 De % = Fe'ka
i¢pCe®* — jpDe ' = ikFe*®

leading to

| Cleita + De— b0 — [eika (163)

Ce'¥* — De™0% = %Fe”“"‘ (16.4)

Now solve for A, B, C, D all in terms of F to make life simple. From the
first two equations we get

= (1+8) e (1 £)o

A=4(1+¢)o+5(1-¢)D (16.5)

B

) D (16.6)
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From the second two equations we get
ipa k ika
20" = [ 1+ E Fe

2C = (1 + g) Feilk=d)a

C =4 (1+%) peit-ie (16.7)

. k )
2De™ % = (1 — 5) Fe'ke

2D = (1 — g) Feilkte)a

D=1 (1 . g) Feiltd)a (16.8)

.. . . 2
Now we want the transmission coefficient through the barrier T' = ‘%‘ .
This means that we need to determine A explicitly in terms of F.

1 ) 1 )
5(1+E>C+5<1E>D
_ 1 LANE B\ poit=tyal L L (1 _ N1 (1 _E\ pithter
= 5(7) B () o3 (0-8) 5 (- 5) e
1
4

k+ (,25 k+ (b i(k—p)a l k— ¢ ¢ —k i(k+d)a
() (557 e ea (5 (557 e

_ %@S {(k—}— o)2eitt—Pa _ (f ¢)26i(k+¢)a}

call By = =92 and E, = eiktd)a
F
= —[(k2 + ¢2)E1 + 2k‘¢E1 — ((]g2 —+ ¢2)E2 . 2]€¢)E2)}

4k
F

= 55| T ) B — Bp) 2k (Er + By

— m[(kQ + ¢)2)(ezkae—z¢a - ezkaewSG,) + 2k¢(ezkae—z¢a + ezkaezqﬁa)]
Fei,lm, o 5 61',(;5(1, o e—i(ﬁﬂ, ei¢a + 6—1',(;5(1,

= T [m(k +¢?) (T) + 4h(——5—)
Feika

= g [4kecosoa - 2i(k* + ¢”)singal
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yielding

A= 4k¢ “[4kpcospa — 2i(k? + ¢?)singal (16.9)

Though we don’t need it right now, we will solve for B

R 1ihiLe
B = 2(1 k)0+2(1+k)D
_ LN L (LB petae| L (1 L8 (L1 ZE) peithron
Sa (R Lleg) e () ()
_ FE_6y kLo kg0  FELS oi(ktd)a
_ F s oy ika—iga  F 12 2\ ika iga
= 4k¢(k ¢°)e e 4k¢(k " )e'"e
— %(lg . ¢2)eika(67i¢a . ei¢a)
_ 2iF 2\ Jika eid)a o
= M(QS k%) < 5 )
= % (% — E*)e*singa
leaving
B = m@;#k) e*singa (16.10)

Now we are in a position to evaluate our desired transmission and reflection
coefficients.

The relevant fluxes are

o U1 ‘A|2

e v1|B|?

o v3|F|?

where v = vs.
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The reflection coefficient is
B 2
Z‘

2

R =2

U1

B
A
B*B
A*A

F2($2—k2)2sin2pa
4k2 2

Torrz | 16k2¢2cos2pa + 4(k? + ¢%)?sin®gal
{(¢27k2)25in2¢)a}

4
14k2¢2cosga + (k2 + ¢2)2sin?dal
(¢? — k2)%sin2ga
4k g2 cospa + (k2 + ¢2)2sin’¢a

yielding our desired reflection coeflicient

— (2 —k2)2sin’pa
R - 4k2¢20052¢a+(k2+¢2)25in2¢a (1611)

Now we need to find our transmission coefficient.

F2

A
2

v3
v
F
A
F*F
A*A

T =

F2
(%f?) [16k2¢2cos2pa + 4(k2 + ¢2)2sin2¢al
16k2¢2
16k2¢2cos?pa + 4(k? + ¢?)2sin¢pa

yielding our desired transmission coefficient.

— 1
T - 0052¢)a+%5%2225in2¢)a (1612)




110 CHAPTER 16. POTENTIAL BARRIER

Now you could stop here but in many textbooks they keep going by recog-
nizing that k2 = <%> and ¢? = (%) This leads to

T = ! (16.13)

=
1+ ﬁ sinZ¢a

although I won’t go through the math to get it.

Case 2 (e < V)

Again, assume a source of particles on the left only. What is the behavior
of the wavefunction? What does the transmission 7" = ‘%‘2 and reflec-

. 2 . . . . .
tion R = ‘%‘ coefficients look like? To begin with, we have the following
wavefunctions in regions 1, 2, and 3 as

“111 — Aeikm + Be—ikm
Uy = Ce’ + De "
\1,3 — Feik:p + Ge—ikm

where k% = % and ¢% = % Also remember that there is no source
of particles on the right. Therefore G = 0 above. This leaves

’Aevkr + Be—ikm|
|Ce¢$ + De=%® |

Like in the previous case, we apply matching conditions to merge the
wavefunctions at the different interfaces between regions 1, 2, and 3. This

gives
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From the first two equations we have

A+B = C+D
ikA—ikB = ¢C — ¢D

or
A+B = C+D
¢ ¢
A-B = —C--=-D
ik ik
leading to

_ ¢ ¢
24 = <1+E>C+<1—E>D

or

A=1(1+%)c+3(1-%)D (16.14)

alternatively we can solve for B

_(1 2 k4
= (1-2)o=(1+2)p

giving

B=3(1-4)C+3(1+4)D (16.15)

From the second two matching conditions we have

Ce? + De % = Fetha
¢Ce® — pDe ?* = ikFe'**
or
Ce?® + De 9 = Fe'*e
Ce? — De % = %Fe“m
leading to
ik
20 = (1 + ’—> Feib
¢
ik
20 = (1 + %) Fetbag—9a
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giving

alternatively we can solve for D

-~
9De~ % — (1 _ Z—) Feika
¢
o
oD = (1 . %) Fe1,kn,e¢n,

giving

D= % (1 — %) Fetkaed

Now express A and B in terms of F'
1 ¢ ¢
5(1+Z>0+ <1E>D
I I PR o SR T .
=3 (g)a (g re s () (0 5)
_ Feka 103 kY s Fe““ 10} k
=S () () B () (F)
B Feika‘ ¢ ik _¢a
) () (-3) (-2
Feika ‘(¢+z’k> <¢+ik> pa ( —zk)( —zk) ﬂ
= e
4 |\ ik 1)
Feika

Feika
= — (% + 2k — k?)e P — (% — 2ike) — k?)e??]

= T (@+ k)% — (6 — ik)e™|
4ikop
Feika

— 420 —¢a ba . —pa Pa 2/ _—¢a
4ik¢[ ¢“(—e P +eP?) + 2ikp(e™ " + e?) + k*(—e ™ + e

Feika 9 9 a _da . éa _a
= Do [(k — ¢7) (e — e %) 4 2ikp(e? + e )]
Feika 2 2\ . .
= 1o [2(k* — ¢°)sinhoa + dikpcoshpal

.

=1 (1 + 76) Feibag—oa (16.16)

(16.17)

Feika—l—qf)a

e??

)
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leaving

A =22 [(K — 6%)sinhea + 2ikécoshgal (16.18)

We can now evaluate the transmission coefficient.

F2
T —
Tz (K2 — ¢%)2sinh?ga + 4k>¢2cosh? pal
_ 4k2¢2
~ 4k2¢2cosh?pa + (k2 — ¢2)2sinh2¢a

1

cosh2¢a + %smh?gba

where recall that cosh’¢a = 1 + sinh’¢a
1

1+ sinh?ga (1+ 5500 )

break up the term in parenthesis. It becomes (k2 + ¢?)?

this gives our desired transmission coefficient

T = L (16.19)

T LG22 o
1+ 11242 sinh?¢pa

Note that this result is nonzero and hence nonclassical. You can have prob-
ability of finding the particle in an energetically forbidden region. This is
called tunneling.
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Now for the reflection coefficient. Here we need to find B.

¢ 1/1+¢
(1_ik>0+2< ik )D

1—¢ 1 ik e 1 10} 1 ik ”
—{1 — | Fe'a $a 1 1— Fet a+pa
() 5 () e )5 () 5 (- )
_ F (Zs ik ika—gpa F ¢ ik tka+gpa
_ 4<1 Zk><1+¢)e +4(1+Zk -2
Feke (ik— ¢\ (o+ik\ _40  Fer (ik+ ¢\ (o—ik\ ,,

= - e "+ - e

4 ik 103 4 ik ¢

= 1:;; [ — ik)($ + ik)e " + (¢ — ik)(¢+ik:)e¢’a}
— Zf;];;l {2 (6? + k:2) (e 26_@)}
_ 1; ;;a (62 + k2)sinhoal
yielding our desired expression
B = L2 (¢? + K?)sinhoa (16.20)

Now put it all together to get the reflection coefficient.

R:‘—

F2($2+k2)2sinh? pa
252
F2[(k2—¢2)2sinh?pa+4kZ P2 cosh? pal
Ak2 ¢2

(¢ + k%)2sinh®pa
[(k2 — ¢2)2sinh?pa + 4k2p2cosh? dal
(¢2 +]€2)2
(k2 — $2)2 + 4k2¢? cosh?ga

sinh2da,

cosh®ga

where recall that tanh2¢>a = m

This gives our desired reflection coefficient

— (¢%+k%)?
R - (¢27k2)2+4k2¢v2tanh2¢va (1621)




Chapter 17

Nondegenerate perturbation
theory

The basic idea here is that the true Hamiltonian H is close to an approximate
Hamiltonian H(® whose eigenfunctions and eigenvalues are known. The
difference H(") is called a perturbation. Higher order corrections such as

~

~

H® H®) | can be included if desired. Usually though you will stop at

the first or second correction to either the energies or wavefunctions.

We introduce a parameter A to keep track of the order or alternatively,
the order of refinement of the solutions.

So 1st order corrections from H(") have a \ in front of it.
2nd order corrections from H?2) will have A2 in front of it
and so on in this fashion

Also A does not represent any real physical quantity. It is simply a
mathematical technique for keeping track of the order of approxima-
tion. In the end we will usually set A = 1 but the method is valid for
any fraction of A.

Our corrected Hamiltonian is therefore

H=HO g™ 2@ |

where H® is our unperturbed Hamiltonian whose eigenvalues and eigen-
vectors we know. Our wavefunctions and energies are

U = 0O L v L \29@ |
€ = 6(0)—|—/\6(1)—|—)\2€(2)—|—...

115
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The results of perturbation theory are derived by taking the exact Schrodinger
equation H¥ = eV¥ and substituting in our above expressions for ¥ and e.
Next we group all terms with the same power of A.

HO + XxH® + X2H[@O £ v 4 \2p?)]
- [6(0) + 2 £ /\2\11(2)”\1;(0) + v 4 /\2\11(2)]

Ok things get complicated here. We will separately evaluate the left and
right hand side of these expressions. In addition, we will consider terms only
up to second order (i.e. drop A* and higher terms).

Left hand side

HOwO® 4+ OGO L 2g0g®@ L 3gg@ L g g®)
+ AHDOWO L \2gMg) 4 A3 g@)g)
+ XHO O

When we consider terms only up to second order we get

HOgO) /\[H(O)\I;U) + H(U\p(o)] + )\Q[H(O)\I;(Q) + HOgM L H(Q)\I;(O)}
Right hand side

g L 2AOg(M) 1 Z2.0p2) L A3y 4 \*2)p(2)
+ ADTO L N ZMgl) L 332 p)
22O

When we consider terms only up to second order we get
g )\[6(0)\1;(1) + 6(1)\1;(0)] + /\2[6(0)\11(2) + Mg 4 6(2)\11(0)]

Now because the solution must be true for all values of \ one can equate
the coefficients of power of A giving

HOGO) — (0)g0) |

HOwM 1 gy — (0)g() L (M)gy(0) ’

HOw® L gMy() L g@gO) — (Og2) L My 4 2)p0) ’




117

Let’s rearrange these expressions to get

(HO — eOw® =] (17.1)

(HO — Oy 4 (M) — M)w(0) =g (17.2)

(H(O) _ 6(0))\1;(2) + (HU) _ 6(1))\11(1) + (H(Q) _ 6(2))\11(0) =0 (17.3)

The first of the three equations is our unperturbed case. It provides our
zero-order solutions. Nothing special here.
Now multiply all expression by ¥*©) and integrate. Also let’s switch to
bra-ket notation so I don’t have to write out the integrals.
< lI!(O)\H(O) _ 6(0)‘\1;(0) >
< TOIHO — Op() 5 4 « O g0 — g
< 0O gO _ £Og® 5 4 < O " Mg 5 4+ <« O g@ _ (2)gO

Now in the case of the first order and second order expressions the first
term in each case is zero.

< \I!(O)\H(O) _ 6(0)‘\11(1) >

< \11(0)‘]{(0) _ 6(0)‘\1;(2) >

this is because H(® is Hermitian H© = H1©)  So you can operate with
H®© on the bra and see that each expression will die. Alternatively, you
could also invoke the orthogonality of < ¥(0)| and |¥(V) > after operating
on the bra.

This leaves

< PO O — O)g© > 0 1st order
<O FD —Me > 4 < O _ @90 ~ = 0 2nd order
Next let’s break each expression up and drop any zero terms. We get
< O HM GO 5 ) « gOpO » =
< \I;(O)‘HU)‘\I/(U > —elM < q;(O)‘\pU) >4 < q/(0)|H(2)‘\p(0) > e < \Ij(0)|\lj(0) >
reducing to
<O FMPO 5 0 =
<O HOEO > 4 <« gO|F@ @O 5 _(2)
finally simplifying to
<O HFOPO 5 =
<O HFOPM > 4+ <« O F@)gO
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Therefore for the energies we have the following first and second order cor-
rections to the zero order solutions.

e =< O FO PO > (17.4)

€ =< 0O FMTM > 4 < vO | FO|T?) > (17.5)

Note that to get the second order energy correction you already need to know
what \\11(1) > is. The same applies to higher order corrections and means
that this can get pretty tedious. Usually you stop at first order corrections.
So right now our second order expression is not necessarily in a useful form.
We will revisit this later after finding out what [¥(") > looks like.

Example 1, expression for ¢

Please calculate the expression for the third order correction e

H
v

€

3

= HO 4 HD £ X2H® £ N3HG) 4

TO 2™ 4 A20p®@) 4 N3pB) 4
€O 4 el 4 22 4 233

Plugging this into the Schrodinger equation we get

[HO + AHD + X2H® 4+ BEOTO £ xpM 4 X20@) 4 \3¢6)]
= [0 £ X" + 22e® £ X3BNTO L AT + 202 4 N3]

Again, since this gets a little involved we will consider the left and right
hand side of this equation separately.

Left hand side

H0)y(0)

+ + + + 4+

+

AHOWM 1L 20 g@) L 3HFOGE) 4 gt g®)
N HOgG) L A\6gGIy3)

AHMOWO L 2y L 3 gMg@) 4\ g@)g2)
AN H®W®

ANHO@O) L A3g@g() L\ gG)g()

A WO

We want the third order corrections here.
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Right hand side

0 (0) AWM 1 \20 g @) L \300pB) L \4e(DFB) L N5 gB) 1 2\6B3)gB3)
AeDTO L A2eMg L BME@ L N\ g) | \5.6)y3)

A2e@D g 1 A3@g() L (4 B)g)

A363)p(0)

+ + + +

We only want the 3rd order corrections here.
This leaves

HOEG L gMw® L g@g) L gOwO0) = (O)gB) L Hy?2) L 2y 1 )y

Multiply both sides by ¥*(®) and integrate. Switching to the Dirac bra-ket
notation we get

(HO — )G > +(HD — )o@ > 1 (H® — ) w) > 1(HO) — B w® =9

<O HO _ @) 5 4 « gO g0 — D)p® >
+ < 0O H® el > 4 < \I;(O)‘H(?»)*E(S)MJ(O) >=0

the first term drops out leaving

< TOHD — Dp® > 4 « gO| g — 2)p) >
+ < PO HG g0 =9

becoming

< TOIHOP? 5> ) « gO15?) 5 4 <« ¥ FO|g() 5> 2 < gO)g)
+ < PO PO 5 ) « gOp0 =9

by orthonormality a bunch of terms drop out giving

< PO HMDT? > 4 « O FA () >
+ < 0O HE) GO 5= )

Therefore our desired 3rd order correction is

B =« \I!(°)|H(1)|‘I'(2) >4 < \I!(O)|H(2)|l11(1) >4 < \y(O)‘H(3)|\1;(0) >

(17.6)
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Example 2, Particle in a slanted box

We have a particle in a 1D box with a slanted bottom. The perturbation
term is H(") = ¥z where V is some constant. The zeroth order wavefunction

a
. . . . 272
is v(0) = \/gszn% and the zeroth orther energies are ¢© = %.

What is the 1st order correction to €©?
From nondegenerate perturbation theory the first order correction is

€ = < O FM PO

/a, (\/5 . n7r;v> (V > (\/E . mrsc)
= —sin—— —x —sin—— | dz
0 a a a a a
= 2 <K>/ xsinQﬂdm
a\a 0 a

let b= 2
a
A VA
= — rsinbrdx
a” Jo

1
where sinbx = 5(1 — cos2bx)

- v [1/ x(lcos2bx)dm]
2 Jo

= Z2 /:L’dx/ xcos2bmdx]
a= 1Jo JO

[ 2 a
- Y sc_g/ xcostajdm}
2 0

a? |
vV r.2 a

= = a_/ :rcos2ba:d:v]
a L 2 0

Solve the integral by parts. Let u = z,du = dz,dv = cos2bxdx,v =
%sinbe. We get

Vo  Vi]xz . " @1 .
= 3 _%sm2bx|o /0 %sm%xdm}
V Viz . . 11 N
= 5 _%sm2bx’|0 + %%00521)1%}
the first term is zero
vV VIl a
= 5 — ; @C082b$|0:|

the term in brackets is also zero



121

therefore

=Y (17.7)

This is our desired 1st order correction.
The final corrected energies are then

n2p2

> (17.8)

€ =

8ma

where n =1,2,3,...

Example 3, An anharmonic oscillator

Consider an anharmonic oscillator whose potential is U(z) = 3ka? + g2,
Note that this problem does not require a lot of math.
Calculate the 1st order correction to the ground state energy. We have

1
5)h1/

U = N,H,(a?z)e "5

e = (n+

1
where o = ,/% and the normalization constant is N,, = \/1— (O‘) 4

The first order energy correction is
M =« \11(0)|H(1)|q;(0) >

where H() = %'yx?’. We have

%/_O; <N H,(aZz)e ‘”SQ>( )(N H,(a2z)e —“ziz> da

= I [ H (b)Y H e da

Now if n =10 Ho(a%x) =1 leaving

= %NE/ :p3e*a$2dm

The first term in the integral is odd. The second is even. Now by symmetry
their product is overall odd and over the range of the integral it evaluates
to zero. Therefore

€N =90 (17.9)
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This is our desired first order correction. So to first order the overall energies
are

e=(n+ 3)hv (17.10)

Example 4, Another anharmonic oscillator

Calculate the 1st order correction to the ground state energy of an anhar-
monic oscillator whose potential energy is

I TSN S S
Ulx) = 2]{:3: —|—6fyx -|—24ba:
1 1
H(T) —_ 3 iy 4
g7 T ™
1
e = (n+<)hv
2
1 az2
U = N,H,(a2x)e 2~
1
where o = % and the normalization constant is N = \/ﬁ (%)Z and
1
Ny = (%)Z if n = 0. The first order energy correction is
D = <\1;(0)‘H(1)|\p(0) >
~ R N e L 1 _ad®
= NoHp(a2z)e™ 2 g® +ﬁbx NoHp(a2z)e™ 2 | dx

We have already done the 1st term. By symmetry it drops out leaving.

— i [ (Holabe) ) Hoaba)e " do

— 00
1
where Ho(a2z) =1
b 2 * 4 _—ax?
= —N, e " dr
24
this integral does not dissapear by symmetry

— 00

and must be evaluated

bNO2 o 4 —qx?
= H/ T e dz

looking this up in a table of integrals

—00

where

0 9 2 _ 135(@2n-1) /7
fO e dx——anan \/g
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Our integral evaluates to % ~. The expression becomes

_ bNg 3 s
12 \8a? «
_bNg 7
3202\
where Ng = Hg giving
T

_ b
T 32a?
h 2 k:u coe
where o = 22 giving
_on?
 32ku
The overall energy with the first order correction is therefore
1 bR
= —)h
e=(n+ v+ o
- 1 bh?
e=(n+3)+hv+ 35 (17.11)

Wavefunctions

Now that we have the energy corrections, what about the wavefunctions?
Note that you will usually go to second order in the energies but only 1st
order in the wavefunctions. Note that this is also called the Raleigh Ritz
method.

We have \IJEO) which is our unperturbed wavefunction. We know that we
have corrections like

Ty = 00 A0 £ 2299 4

A convenient way to express ¥(!) is as a linear expansion in unperturbed

5-0) or |j >. We then have

‘1151) = ZCUU >
J

and where c;; are weights representing how much of each unperturbed wave-

wavefunctions which we will denote as ¥

function is present.



124 CHAPTER 17. NONDEGENERATE PERTURBATION THEORY

If we go back to our expression where we derived the 1st order corrections
in energy we have

(HO — g 4 (7O — Mgl = 9

i i

H(O)\Illm +HOPO 650)q,§1) +€l(1)‘1,§0)

)

Now recall that \IIEU = Ej ¢ij|j > and replace into the above expression

H(O)Zcij|j>+H(])|i> = eEO)ZCUU>+6§1)\i>

j 7
S HOj > +HOi > = €03 eyli > +eV)i >
§ J

Recall that |j > are eigenfunctions of H (0) since we expanded in the unper-
turbed basis.

Zcijeg-o)\j>+H(1)|i> = GEO)ZCU\j>+GE1)\i>

j J
O3 eili > +HOi > = &3 eyli > +eVi >
j J

Next to start finding our desired coefficients ¢;; multiply both sides by < k|
which is a member of the unperturbed basis. Note that &k # 1.

6](0) D e <hj>+<kHVi> = e > iy <Klj > +el < ki >

J J
03 ey <hli >+ <kHOi> = &Y ey <kl
J J

Now due to the orthogonality between |k > and |j > the only terms in the
above expression that survive are those where k& = j.

e](co) Zcik+ <kHV)i> = 61(0) Zcik
k k

Consolidate our desired c;; terms to get

Y (e )= <kHV|i>
k
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Therefore

. < kHD; >
=0 o
o —4”)

D4
ci = —?'ilf (lf)j (17.12)
€ —€p

These are our desired correction coefficients. Also recall that ¥(1) = $° i cigli >
so you can see that the corrected wavefunction to first order is

ElHMD|;
W= \z>+zk<—((|))—(‘(%|k> (17.13)
k
The correction is
EHD|;
v =%, = (L) (Li k> (17.14)

Now that we have the 1st order correction to the wavefunction, we can go
back and express the 2nd order correction in energy in a more useful form.
Recall that

@ =< WO HO P > 4+ < 1O HO 9O >

where we didn’t know |‘IJZ(-1) > before. Now that we have an explicit form
we can substitute it in. To make life even easier assume that the total

perturbation goes only to first order, thus H® = 0. We get

@ = <O >

> < kHMi >< i HV|k >

k (GEO) - 61(60))

The final expression is

<k|H®|i><i| HD | k>
€ =y, =H (E<|0>_e<‘0>) ‘ (17.15)
7 k

This is a more user friendly 2nd order energy correction. Also note that
1 = k. This is called non-degenerate perturbation theory.
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Summary
eV =<i|HO}i > (17.16)
EHMD|i><i|HD |k EIHD|5>2
=3, <8 &;<$U \>__§jkbi%rf%%L (17.17)
. klHD;
\W>=M>+§L?%r%%w> (17.18)

So you see that we will typically go to second order corrections in the energies
and only to 1st order in the wavefunctions.

What about 3rd order corrections?

Going back for the 3rd order non-degenerate energy correction e3), Here is
an alternative expression where we don’t need to know \\1152) > only |\P§1) >
Starting with

¥ =< VO FOT? > 4 <« O HOP S 4 < 9O g@)p®
and with
(HO — ™y + (HO — e = o

(
(1O —u? + (1O = Mu - (1O - )u? = o

Using the second and third equations we will try and get rid of the first term
in the first equation. To do this, multiply the second expression by ¥*(2)
and integrate. Multiply the third expression by U*(") and integrate.

Second expression

From the second expression we get the following

(O 6(0))\1,(1) + \I'*(2)(H(1) _ 651))\1,(0) -0

7

\1152)|H(0)*650)‘\I;§ >+<‘I! \H 1)|‘I!§0)> - 0

giving

vIHO — e >= - < wP HO - %)
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where since H(") and H© and 651) and 61(0) are all Hermitian.

<O HO —De® 5 = <O O)p®
<UOHOP? > = — <oMEO _ Ow? >
therefore

= — <o HO 9@ 5 4 v E P S 4+ < 9O F®)O

2

Third expression

Now from the third expression we get

‘1/*(1)(H(0) _ EEO))\I/?) + \I/*U)(HU) (1))\1151) + \I/*(1)(H(2) _ 652))\111(0) = 0
v HEO — @ 5 4 v EO e s 4 < gD E® _ D@ s = 9
or

— <O HO — 9 5 g O — Mg 5 4 <o EE _ 2)g

2

Finally using this last expression we can replace it into the result from
the second expression above to get

) = — <oV HO _ ) g? >+<®NH%%”>+<%%H®@P

< THO — e s 4 < oD — 21O 5
+ < HEOPW s 4 < gO gEE >

The only term that simplifies is the second one in brackets. It reduces to
< ‘I’EU\H@)\\DEO) > since |\If§1) > and \\I!Z(O) > are orthogonal. Now we get
for the 3rd order correction

e =< v HO — V1w > + < oV HO P >+ < vV HO) > 4+ < 00| HE)| v

It is apparent that all we need to know now is \\Ifl(-]) >
Using
Z (6" &)
<i|H >
<ol = X}JL_£_<ﬂ

(6(0) . 6(0) )

J ( J
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Now assume (to make life simple) that the Hamiltonian only has a first
order perturbation H( = 0 and H®) = 0. This leaves behind

@ = <V HO Vel
= <M HEOPO
= < v HEOE" >

J

_ <i[HDj > < k|HC
= |2 |® ZW"“
J v (€ )

"> — <oV e >
S M

Vil g

Mg

_ §j<ﬂHmU><ﬂHWM><MHmﬁ>fé”<
(€ — OO0 _ Oy i

kji i N
S <A HM|j >< jlHD|k >< k|H(”|i >
- 0) 0 0)

s (" — ) ()"

o < iHM|j >
« |2 (€0 _ )

J i J

< k|H(1)\i>‘
0 0
(=)

i

(3

S <iHM|j >< jIHO|k >< k|H(‘)|z' >

(e — (e —

kjti

)i >

_ 3 < z\HU j>< jlk >< k\H
0
*ei(c))

O (0)) (€@

2

kj#i

Now since we have < j \k: > the only terms that are non-zero are those where

j=k

3 <i|HW|j >< jlHO [k >< k|[HD )i >

(6" — e)Ee” — &)

kj#i
Therefore

o0 3 < z|H(1 k>< k[HD|i >

0 (o
ki € - ))2

=3 i HD j>< | HO k> <k HTMD]i>
ki (61(0) 7620))(650)7620))

(M <$|H MW k><k[HD >
- & Z]c;éi

OOy

Alternatively, 651) =< i|HM|i > so that

(17.19)

_ < HDj>< | HO k> <k HD|i>
= ij;éi -

0 0 0 0
(" =) =)

(1)1 <i|HO|k><k|HD|i>
< l|H( )|z > Zk;éi ‘ (FLO)_F(()‘)) l
K k

(17.20)



Chapter 18

Degenerate perturbation
theory

The perturbation theory presented earlier was called non-degenerate pertur-
bation theory and only applied to states that were non-degenerate. However,
in many cases one encounters degenerate states and an external perturba-
tion acts to remove this intrinsic degeneracy. An example is the case of a
particle in a symmetric 3D box where some external force elongates one of
the sides of the box.

Previously you saw that the non-degenerate energy corrections as well
as coefficients for the corected wavefunctions depended, inversely on the
zero-order energy differences between the basis states.

© = Y <klHODi><ilHOk> | <kHD]i>?
: (" ) (¢” =)
, < k|HM|i >
W > = |i> +Zm|k>
¢ i k

© _ 0

You can see that the expressions have a singularity if e
This problem arises because there is a fundamental ambiguity in the
choice of zero order wavefunctions because any linear combination of these
zero order wavefunctions is an eigenfunction of the Hamiltonian with the
same energy.
To demonstrate, let’s take a state with principal quantum number n.

Let’s use another letter to denote the degenerate state. For example, assume

129
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two degenerate states [ and m.

n,l >

|n, m >
Degenerate states of the Hamiltonian H. We then have

Hin,l> = ¢€n,l>

Hin,m> = ¢€n,m>
Now suppose we take some linear combination of |n,l > and |n,m > say

¥ > = aln,l>+bn,m>
where a and b are some constants
H|V > = Hlaln,l > +bln,m >]
= aH|n,l > +bH|n,m >
= aeln,l > +beln,m >
= e€(aln,l > +bln,m >)
= €¥ >

Therefore
H\U >=¢|V >

This shows that the zero order wavefunctions of a degenerate system are
not well defined. Any linear combinations of degenerate states is itself an
eigenfunction of the Hamiltonian H.

The first step in degenerate perturbation theory is therefore to find the
correct linear combination of degenerate states to make a well defined zero
order wavefunction. In matrix-speak you have to diagonalize the degenerate
subspace.

To this end, the correct linear combination of degenerate zero-order func-
tions are obtained by solving a set of secular equations and more specifically
by solving a secular determinant.

This is abstract. Consider the zero-order energy level, n, with degener-
acy g, and energy 67(7(,) ), Suppose that the correct choice for the zero order
wavefunction is the linear combination

9
¥ =3 ens >
J
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where |n,j > are the complete set of individual zero order wavefunctions
that span the degenerate space.
From our previous expression derived from shoving

v, = 0O e A2e®
€ = 650) + )\651) + )\2652) + ...
H = HO 1) HD + X2 4 (18.1)

into the Schrodinger equation HV = eV we got a series of expressions with
different orders of A. Just focus on the 1st order expression which was

(HO — oM 1 (HM — o — ¢

A 9

we shove in our U@ = Y9 cjln,j > to get
g
HO — e u + (EHD )Y ejln.j >=0
J
Now multiply both sides/integrate with < n, k| to get

g9
<n,kHO — V10 > +3 " ¢; < n, k[ HD — eD|n,j >=0
J

(0) ) _ (

Here H® acting on < n, k| gives €, but since ;' = €,
degenerate, they cancel.

9 due to them being

Z'g cj < n,k|HI) — 67(7,1)|n,j >=0 (18.2)

There are g many of these equations, one for every degenerate level j and
each equations is a sum of g values as we run through all possible values of
k.

We get

e <1UHD — 1> 4ep <1/HD — 2> 4. ¢, < |[HD — €]
e < 2lHW — D1 > 4ep < 2lHD — 2> 4. ¢, < |HD — €]
e < 3[HW — 1> 4ep < 3|HMW — 2> 4. ¢, < |[HD — €]
e <4AHW — D1 > 4ep <4lHD — V2> 4. ¢, < |[HD — €]

etc...

vV V. V V

o O o O
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or
<1|H(1)—en)|1> <1HM — 2> . .
<2HO 1> <2HO - 2> | | e
< 3HM — ‘)|1> <3HO —Dips | |ea]=0
<4|H(1)—en)|1> <4HO —Dps ]|

This is called a set of secular equations. In matrix form it can be written as
(HY —eD)e=0

where I is the identity matrix and H(") is the ¢ X ¢ matrix and cis a ¢ x 1
vector and 0 is a g X 1 vector of all zeros.
Now the solution to this is found by solving the secular determinant.

|HD — N1 =0

When you do this you will find the correct values of ¢; that in turn will give
you the correct zero order wavefunctions.

In addition, the first order energy corrections with the perturbation
present, €) are the eigenvalues of the H(") matrix.

Don’t forget that you are only dealing with the degenerate subspace.
There could be other states that are also involved in the perturbation. How-
ever, you can include these corrections to the energies and wavefunctions
using non-degenerate perturbation theory (now that you lifted the degener-

acy).
Zeeman effect, doubly degenerate state
Consider an electron state in the xy plane which is doubly degenerate. Now

apply a magnetic field along the z direction (Zeeman effect). The perturba-
tion Hamiltonian is

H® = gupBI, (18.3)

where g is the g-value (2.0023), pp is the Bohr magneton, B is the magnetic

field and [, is the z component of the angular momentum operator [, =
—ih .
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Let’s say my two degenerate wavefunctions are

ja > _sinm
a> = ——=sinm
N3
1
b> = —=cosm¢

NV

where m is an integer.
Construct the secular determinant.

1
Hla > = ﬁg,uBB(iﬁ)%(sinmgb)
thgppB
= —————(m)cosmao
NZs
thgupmB 8
= ————cosm
&3
H|a >= —ihgupmB|b >
Next
Hb> = ihguBB%sinqu
™
= ihgupmBla >
|H\b >=ihgupmB|a > | (18.4)
So the 2x2 that we construct is
<alHla> <a|H|b>
< b|H|a> < blH|b>
where
- 1 . 1
<alHla> = ﬁsznm¢(—zhgugm3)ﬁcosm¢
2nw
= A / sinmeocosmaodd
0
A 2nm
= — / sin2maodaeo
2 Jo
= — = —cos2mg"™ =0

2 2m
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and
<blHp> = L o(ih B)L inme
= ﬁcosm thgupm ﬁsmm
2nmw
= A / sinmeocosmaodp = 0
0
and
<alHp> = (Lsznmgb)(zh mB)(Lsmmgb)
2nm
= A/ sin*mede
0

2nmw
= é / 1 — cos2maodo
2 Jo

A 2nm

= — {2n7r/ cos2m¢d¢]
2 0

= Anm— é <%) sin2ma|a"™

= Anm

where A = L (ihgupmB). Finally

<bH|a> = (%cosmqﬁ)(ihguBmB)(%cosmqb)
2nm
= —A *med
/0 cos“maedep

A 2nm
= ——/ 1 4 cos2maeode
2 Jo

A 2nw
= -3 {27177—1— / cos2m¢d¢]
0

where A = 1 (ihgupmB)
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Summary

<a|Hla>=0

—
0
=2}

< a|lH|b >=ihgupmB

—
0
BN |

< b|H|a >= —ihgupmB

<bHb>=0

The secular equations are

0— e thgupmB Ca\ _ 0
—ihgusmB 0 — €M ey )
leading to the secular determinant (since we don’t want the trivial solution,
cq=c, =0)

—eM thgupmB| 0
—thgupmB —e N
which evaluates as
e _ R2g?u%m*B?Y = 0
7 = (hgupmB)?
or
) — +hgupmB (18.9)

Now that we have our 1st order energy corrections we go and find the co-
efficients ¢, and ¢;, to get he correct lienar combination for the zero order
wavefunctions.

First for ') using (4) solution

—hgupmB  ihgupmB Cq _0
—ihgupmB —hgupmB ) \¢c,)

for simplicity let a = hgupmB to get

(G ") ()=
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Solve this however you want, Gauss-Jordan elimination etc...

—*x1 =1
() (6) -0
—ia —a Cp
1+2—>2

()

Therefore ¢; can be anything. From the first equation we get ¢, = ic;, such
that our desired eigenvector is
]
e ( 1) (18.10)

Next for (') using (-) solution

hgupmB  ihgupmB Cq —0
—ihgupmB hgupmB e )

let a = hgupmB for convenience giving

il—1
(e ) (5) =
—ia a cp
1+2—2
a —a Ca\
(5 0) ()=
It is apparent that ¢, can be anything. We evaluate ¢, = —ic;, giving our

desired eigenvector

cy (f) (18.11)
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Summary

Uy = —s(ila > +[b >) (18.12)

U_ = (—ila > +[b>) (18.13)

These are the correct linear combinations of zero order wavefunctions.

The first order energy corrections are

68:) = hgupmB (18.14)

e = _hgupmB (18.15)

Examples

Example 1

An example using nondegenerate perturbation theory to get warmed up.
We will do this to second order in the energies.

0+ 0.5X 0.8\ 0.4
H = 0.8\  2+04X  0.6A
0.4 0.6A 4-0.2X

You can see here that the diagonal elements are non-degenerate. Specifi-
cally, the perturbations to these energies are smaller that half the splitting
between states. This confirms that non-degenerate perturbation theory is
appropriate.

With regard to the energies, you can already begin to read them off. The
zeroth order energies are

e =0 (18.16)
e =2 (18.17)

=4 (18.18)
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The 1st order corrections to these energies are

e =05 (18.19)
" =04 (18.20)
e =02 (18.21)

Using our previous results from non-degenerate perturbation theory we get

)

(0.8)2  (0.4)2
(0—2) (0—4)

0.64 0.16
2 4
—0.32 - 0.04
—0.36

Our second order correction to the base energy of state 0 is

el?) = 0.36 (18.22)
Next
0.8)2 0.6)2
o _ 08 (00)
2-0 (2-4)
_ 064 036
2 2
_0.28
2
= 0.14
Our second order correction to the base energy of state 1 is
é? =0.14 (18.23)
Next
& _ (042  (0.6)
2 (4-0) (4-2)
_0.16 N 0.36
4 2
= 0.04+40.18

0.22
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Our desired second order correction to the base energy of state 2 is

) =0.22 (18.24)
Summary
e =c+e) 1 e =0+05-036=0.14
e =V eV e =2104+014=218
e =e+e) + e =4-02+4022=4.02
Example 2

An example of almost degenerate states

1+ 0.5X 0.8\ 0.4
H = 0.8\ 140.4X 0.6\
0.4 0.6X  4-0.2X

Along the diagonal one can see two nearly degenerate states. So non-
degenerate perturbation theory cannot be used for these two states although
in principle it can be used for the third state at the bottom right. We know
that the appropriate |0 > and |1 > states will be a linear combination of the
zero order wavefunctions

0> = a0> +b|1 >
1> = ¢0>+d1>
Now you can go ahead and brute force it by solving the full secular etermi-

nant exactly or you can take the degenerate perturbation theory approach
and only diagonalize the degenerate subblock. So do either

1405\ —€ 0.8\ 0.4
0.8\ 1+04X—e€ 0.6\ =0
0.4\ 0.6\ 4—-0.2\—¢€

or

1+053—e 08\ | _
0.8\  1+04\—¢
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or better yet just leave out the zero order base energies and solve

0.5 —€ 08\ |
0.8\ 0.4x — M| —

Let’s solve the third determinant.

0.5 — M) (0.4—€eM)—064 = 0
0.2 —0.5¢M — 0.4¢M £ 064 = 0
€M 0.9¢M —0.44 0

We know the solutions to the quadratic equation to get

() _ 09+ /0.81 + 4(1)(0.44)
B 2
0.9+ /08T +1.76
- 2
0942357
= =
_0.9+1.603
- 2

We therefore have
09+16 25
M ==2 T 27 _ 125\
€ 2 2
0916 0.7
m_22-0_ Y
€ > 5 0.35\

These are our first order energy corrections to lift the degeneracy in the
presence of our perturbation. The corrected energies are

leo =1-0.35)] (18.25)
ler =1+1.25)] (18.26)

Recall from before that now you know (') you can go after the correct
coefficients (a,b,c,d) where |0 >= a|0 > +b|1 > and |1 >=¢|0 > +d|1 >.
And since es was non-degenerate to begin with we could have used non-
degenerate perturbation theory to get €2 corrected from the start if we only
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wanted €s.
(0.40)2  (0.11)?
= 402X\
K Taoy TEoy
1622 362
= 4—0.2>\+0 6 +036
3 3
2
= 4—-02)\+ 050
giving
€2 =4 — 02X\ +0.17)\2 (18.27)

Corrected to second order using non-degenerate perturbation theory.
However, in practice if you diagonalize a degenerate subblock (leading to
0 >" and |1 >' as linear combinations of original zero order wavefunctions)

0> = al0>+b[1 >
1> = ¢0> +d|1>

you should probably recalculate all other off diagonal elements.
So let’s take our previous example and make it truly degenerate for the
purpose of this example.

1+0.5)  0.8) 0.4)
H=| 08\ 14051 0.6X (18.28)
0.4) 0.6A 4 0.2X

We diagonalize the degenerate subblock. You can do this by solving for
either € or for €(V). Just remember what you are solving for. Here we do it
for e.

‘1.56 0.8 _ 0

0.8 1.5 —¢€

giving

(1.5 —€)?—-08 = 0
(1.5 — €)? 0.8
1.5¢ = +0.8
e = 1.5+0.8
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yielding

(18.29)
(15:30)

These are our new energies for states 0 and 1. Putting these back into the

original matrix we get

07 0 0.4*
H = 0 23 0.6*
0.4* 0.6 4—-0.2

Now we go after the terms with asterisks. First though we should find our

eigenvectors

Case 1, ¢ = 0.7

0

1.5-0.7 0.8 a

0.8 1.5-0.7 b

0.8 0.8\ [a

0.8 0.8 b
—14+2—=2

(5 7)) -

where b is anything and a = —b. We get
-1
/(4

or let b = —1 for convenience
(1
-1

The normalization constant of this vector is \/Li Put it all together and get

Il
o

0>'= %(\0 > —[1>) (18.31)




Case 2, ¢g = 2.3

(1.5

—23
0.8

1) () =0
(os %) (5) =0

142 —2

(2 5)() -

So b can be anything. Let b =1

The normaliztion consta
tion is

()
)

e 1
nt 1s 75

1>'= (10> +[1>)
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(18.32)

Now putting it all together the wavefunc-

(18.33)

Now we can go and re-evaluate all our off diagonal elements when dealing

with |2 >.

<0|HV|2 >

1
= —(<0-<1)HD]2 >
V2
1
= —[<0HV]2> — <1|HD|2 >]
V2
1
= —[04-0.1
\/5[ ]
1
= —(—0.2
ﬁ( )
= —0.1414

<0 HM|2 >= —0.1414

(18.34)
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Next
/ 1
<1HD2> = —(<0l+<1)HV|2>
[H| \/5( | NHY|
1
= —[<0HM2 >+ <1/HV]2 >
\/5[ [H| [HY[2 >]
1
= —[0.4+0.6
\/5[ |
1
= —(1
\/5()
= 0.7071
<11HM|2 >=0.7071 (18.35)

Now put everything back together

0.7 0 —0.1414
0 2.3 0.7071 (18.36)
~0.1414 0.7071 4 - 0.2

H

Now can do €2 up to second order in non-degenerate perturbation theory.

2nd order degenerate perturbation theory

But sometimes 1st order degenerate perturbation theory may not totally lift
all the degeneracies, especially if the perturbation H(") does not couple the
degenerate levels. For example

14 0.1X 0 0.4
H = 0 14 0.1x 0.6
0.4\ 0.6 4—0.2X

The top left corner of the matrix reveals the degenerate subblock where you
can see that no off diagonals connect the two degenerate states.
We also cannot use 2nd order non-degenerate perturbation theory. Are
we stuck? No, we can use 2nd order degenerate perturbation theory.
Formally, you assume that

e Hj; =0, (no off diagonals coupling the levels and where jk are (j # k)
degenerate levels)
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M _ (1)

) Hjj =€
e Like before, assume that the wavefunction has the form: |m >=
S ek > 4Am) > 4X2m®) > 4 ... where g is the degen-
eracy of the level and the sum is to express the “true” zero order

wavefunction as a linear combination of the degenerate original zero
order wavefunctions

e Next assume H = H(©® + NH(") where there are no second order terms
in the Hamiltonian. Only consider things to 1st order here.

o Also e = 6(0) —+ AGS—;) + )\261(—,%) + ..
Now plug everything into the Schrodinger equation.

HU = €U
g

(HO + XHND " epk@ > +2m") > +X7m >]
k=1

9
= (@ 4 aelD) 4 )\2€£3))[Z erEO > 4 AmM > 4$22m@ ]
k=1

We expand this expression and equate the powers of A like we did in the
non-degenerate section. (This derivation will be slightly different though)

For )\°
g g
g© ch|k(0) >= 0 ch|k(0) >
k=1 k=1
(HO = ) S ey 6 > (18.37)
For )\

g9 g9
AHOm™M > 4AHM Y " 4 [£0) >= A m) > 42l Y " ¢ 6@ >
k=1 k=1

(HO — i) S0 enlk® > +(H® — )jm >=0|  (18.38)
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For )\?

g
NHOm® > tXHOm® > = NeDm® > 127 > 4222 "¢ 1O >
k=1

m

g9
(HO — Mm@ > +HD — )| > = €D ek >
k=1

€D eplk® >= (HO — D) m®@ > +(HM — i) m® > (18.39)

Now to derive an expression for the second order degenerate perturbation
theory energies € multiply /integrate the last expression by one of the
degenerate zero order states < j (O)|

g
65,%) ch < j(0)|k(0) S = < j(O)‘H(O) _ 67(g)|m(2) >4 < j(0)|H(1) _ 67(11L)|m(1) >
k=1
7 and k are both from the degenerate space
eg)ck:jcskj = <O M —)pm) >
eg)ckzj(;kj = < j(O)‘HU)‘m(U > fe(gl) < j(O)‘m(U >

Now here we will insert the closure relation over all zero order states, both
degenerate and non-degenerate. The closure relation recall is ) >° n0 ><
n(®| = 1. We then get

eep—ibr; =Y <FJOHD @ >< nOm) > =3 " ell) < j01n0 > < nO)m(1) >

T

Now since n runs over both degenerate and non-degenerate states, split the
sum into two. One part runs over all degenerate states and the other over
all non-degenerate states > = > v+ > . _p where ND=non-degenerate
and D=degenerate.

6g)ck:j5kj = Z < jOILHD RO > < nO)n0) >
n=ND
_ egb) Z <](0)|n(0) >< n(O)‘m(U >
n=ND
Y < OEORO S n® O >
n=D

= DS < OO < O >
n=D
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Now look carefully. In the > _\p part we have
—ell) Z < OO > < n@mM >
n=ND

Here j belongs to the degenerate subspace whereas n by definition belongs
to the ND subspace. Therefore this term=0. We are left with

€2 s 0 Z < JOIHM RO > < nOnM >
n=ND

n Z < JOUHM O 5 < O ()
n=D

— )Y <O < nOm) >

n=ND
= Z < FOIHORO >« pOpM >
n=ND
+ Z[ OIHO RO > —e;,] < n©@m) >
n=0D

Now here recall that j belongs to the degenerate subset as well as n. And
that all off diagonal terms = 0 (this was one of our formal assumptions way
at this beginning of this section.) We get

eg)ck:j(skj Z < jOILHO RO 5 < nO0)mM >
n=ND

+ Z 1)5 — eV, < n@m™ >

m_ (M

Now recall our second formal assumption that H i = €m’. This means that
Y oneplHj=n0jn — 61(71)5jn} < nOm") >= 0 leaving

n=ND

Now the only catch is that we need to know what < n(®|m(") > is, To do
this go back to our 1st order expression

We have

E)
(H(U (1))ch|k(0 >+(H() 6(0))|m(1)>:0
k=T
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and remember that k is part of our g degenerate subspace.
Now multiply /integrate by < n(®)| which is part of the non-degenerate
subspace.

g
<O HD — D3 KO > + < nO]HO _ O > =
k=1

S < nOED - DEO > 1 < nOHO — O 5 =
k=1

RS}

g
3 exl< nO HOEO > —e) < OO S+ < gO|HO — O > =

Since n is part of the non-degenerate subspace and k& is part of the degenerate
subspace < n(9 k) >=0. We get

g
3" e < nOHOEO+ < O[O — O () 5 g
k=1

where HO|n(0) >= 65?)|7’L(0) >. So therefore < nO|H©®) =< n(o)\eg?) (Her-
mitian).

g

ch < n O HMEO > 40 _ 0)) « @0 =0
k=1
Therefore
g
(e — 0y « RO (1) 5= ch < nO|FO KO >
k=1

giving our desired expression that will solve all things

<’I7/(0)‘H(l)|]€(0)> (18 40)

<nOlmV >= 37, =275

Substitute this expression back into our original expression

eg,%)ck:j(skj = Z < jJOIHMRO 5« O, >
n=ND
< jOIHO RO < nO|HD|£O >
- Z Z (0 Ck

n=ND k=1 (6(0) — €n )
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Consolidate everything

Z Eg: < ](0)‘H(1)|n(0) >< n(O)|H(1)‘]{;(O) > )

Ck — €y Ck:j(sk? =0
n=ND k=1 (€@ — 67(10))
i [ Z < JOLHM RO > < nO|HM)|£0) > _ 6(2)5k,] e = 0
m Ykj -
k=1 ln=ND (€0 — &)

So if ¢ # 0 then

g <j O HD O <O FOEO s (2) _
> k=i |:Zn—ND - (F(O)—F(O))| ‘ —€m 0| = 0] (18.41)
g n

This is basically a series of equations which can be solved by doing the
secular equation.

=0 (18.42)

<iOIHO O > <n O HD KO > (2)5
Zn:ND (6(0)76@) — €m Okj

(2)

Another way to think of it is an eigenvalue problem where €y,
eigenvalue.

is our desired

So you can see that the degenerate levels j and k& couple to each other
through the nondegenerate level n.

Example of 2nd order degenerate perturbation theory

14 0.1A 0 0.4X
0 1+4+0.1A 0.6
0.4 0.6A 4—0.2X

H

We need to solve

3 HinHnk 25 | _
nenp €0 — 67(10) "
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So we already see that n =3

HnEv
z: . k‘*ﬁ“@ = 0
(j=Lk=ln=3) (j=Lk=2n=3) _
(G=2k=1n=3) (j=2k=2n=3)
|Hi32 6(2) H13H°2
1—4 m — 0
Ho3 H3q |H23\2 6(2)
1—4 m
0.4 653) (0.4)(30.6)
ooy e @ = 0
_3 —3 m
016 _ (2) 0.24
—3 m -3 = 0
0.24 036 _ (2)
-3 -3 m
—0.0533— €2 _0.08
@ =0
~0.08 ~0.12 — €
giving
(0.0533 + €2)(0.12 4+ €2)) — (0.08)2 = 0
0.0064 + 0.0533¢2) + 0.1262) + 2 —0.0064 = 0
6,5,2) +0.1733¢2) = 0
€@ (2 1 0.1733) = 0
QOur second order corrections are
) = (18.43)
D) = —0.1733 (18.44)

The total energies to second order in degenerate perturbation theory are
then

leg=1+01+0=11] (18.45)
le1 =140.1—0.1733 = 0.9267 | (18.46)

If second order degenerate perturbation theory doesn’t do the trick then

e you're in trouble

e and/or the levels will likely stay degenerate to all higher orders.



Chapter 19

The WKB Approximation

WKB stands for Wentzel, Kramers and Brillouin.

This is a technique for obtaining approximate solutions to the time-
independent Schrodinger equation in 1D. It is very useful in calculating
bound state energies and tunneling rates through potential barriers.

The method is a real life approach for tackling complicated potentials.

It works best with potentials that are almost constant relative to the
wavelength of the particle.

Start with the Schrodinger equation and assume that the kinetic energy
of the particle is greater than the potential (e > V).

h? 20
—— U=V
2m dx? + V(@) ¢
Rewrite the equation as
h? d*0
——— = (V—e)V¥
2m dzx? ( ¢
d2_\I! _ 2m(V —¢) T
dIQ - h2
dz_\I! _ 2m(e-V) v
dIQ - h?
> 5
- FY
9 _
where £? = %
leaving
LY L KU =0 (19.1)
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Now in general since the potential underneath the particle is slowly varying,
both the amplitude and the phase of the wavefunction will change.
The general form of the wavefunction is

U(z) = A(z)e®

For shorthand just write this as Ae™.

Next we insert this form of the wavefunction into Schrodinger’s equation
above.

To begin, we evaluate some derivatives that we will need. The first
derivative of the wavefunction is

av o, ;.
— = Aie?p + A€
dx

= (A +idg)e?
Next we do the second derivative of the wavefunction

dz\I, ! ’ . ! ; " 1" ! ’
— (A +iA¢)ie?p +eP[A +i(Ap + A )]
(

iA'¢ — A¢”)e + (A" +idg" +iA'p)
= P(id'¢ — A" + A" +iAd" +iA'd)
= (2i4¢ — Ag” + A" +iAg")
Now we replace this expression into the above Schrodinger equation.
e (2i4'¢ — Ap” +iA¢") + K2Ae? = 0
2%A'¢ — A" + A" +iAd" + KA = 0

Group the real and imaginary terms. First let’s do the real terms.

Real expression
A"+ AT+ A =0

Imaginary expression

Next do the imaginary terms

!

2%4'¢ +id¢ =
214.I¢I + A¢” —
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or
(4%) =0

Now we want to solve for A and ¢ so we can have an explicit form for
our wavefunction. Solve the imaginary equation first.

(4%¢) = 0
A2¢’ — 02
where C? is a constant
2 c?
A — -
¢
giving
A= \% (19.2)

where we have buried the sign in the constant C..

The real expression cannot be solved exactly. However, if A varies slowly,
then A" is small and can be ignored. Hence the potential cannot be changing
fast if this approximation is to work.

A"+ KA = 0

2

Ao = K’A
¢12 _ k2
¢ = +k
We get
¢ =+ [ kdx (19.3)

In summary the total wavefunction is
T = Ae'?

or putting everything together we get

U = %eﬂfkdx (19.4)

2m(e—V)
UGS

- and where we also assumed that (e > V)

where k£ =
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Example, Particle in a bumpy well

The potential of this problem looks like
e V(z) is something say F(z) for 0 <z < a
e 00 otherwise

Inside the well (e > V)

V(r) = \/LE(o+ei¢+o_e—i¢)

where recall that ¢ = / kdx
L '
VEk

12

(Cicosp + Casing)
where
¢ U(0)=0 3¢=00r C; =0

e U(a)=0—sing=0o0r ¢ =nr

giving
1 ,
~ —(Cssing)
k
or
Jo kdx = nm (19.5)
where n =1,2,3,... or
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So this restricts the possible values of e. Note however that if V(z) = 0 we
can reduce this expression to something that looks pretty familiar.

a /2
[
Jo h

2me
B~

2me
h?
2me

h?

8ma?

The energies of the particle in the bumpy box are

n2h?

~ 8maZ2

(19.7)

We get back the standard particle in a box energies.
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Chapter 20

Time dependent
perturbation theory

So how do you treat time dependent phenomena? That is where the Hamil-
tonian is time dependent.

For example, one of the most prominent examples is the interaction of
a molecule or atom with light. Or the collision of two molecules. Or the
collision of an electron and a molecule etc...

This is where we invoke another kind of perturbation theory called- time
dependent perturbation theory. (as opposed to time independent perturba-
tion theory which we did earlier.)

To begin with, let’s re-derive the expression of the general wavefunctions
of stationary states. The general form of Schrodinger’s equation is

., 0
zha‘lf(r,t) = HY(rt)
22
WhereH:—hV +V
2m
L0 h* V2
Zha\I’(r,t) = ( 5 -|—V> U(r,t)

In the case of a time independent perturbation we have V' =V (r).
Look for solutions of the form

U(r,t) =¥(r)f(t)
For shorthand reduce this to ¥(r,t) = ¥Uf. Replace this into the general
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time dependent Schrodinger equation.

), IRAVE:
ma(w) = < . +V> T f
, o IRAVE:
mxpfa = - Uf+VUf
! h2 "
BT F = —%flll +VUf

Consolidate the f and ¥ terms giving

’ R
ih\IJf? =V VY
or
inle = $1-Z0" + V] (20.1)

You will note that the left hand side is dependent only on time and that the
right hand side is dependent only on position. To be equivalent both sides
must equal a constant which we call e. (turns out to be the eigenenergy or
eigenvalue)

Left hand side

ihf— = €
f
f B 1€
VD
which we integrate to get
1€t

The desired time dependent function is

flt)=e 7 (20.2)
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Right hand side

m

1 [ #?
U

\11”+V\If] = ¢
K2,
V'LV = T
2m

h2
(%VQ-I-V)\IJ = €U

or

9

This is our usual eigenvalue and eigenvector problem. Solving this we get €
and U(r).
Putting everything together, the general form of the wavefunction is

U(r,t) = W(r)f ()

or more explicitly

—iet

U(r,t) =¥(r)e

(20.4)

Time dependent perturbation theory now

The basic idea of time-dependent perturbation theory is simple. First un-
derstant that if the perturbation (call it V') were absent, the eigenfunctions
appropriate to the problem would be given by the equation

FO G0 — (05O

If the initial state is expanded in terms of these unperturbed eigenfunc-
tions

_ ieglo) t

U(E=0)=) Che = TO(r)

where C,, is a constant, then in the absence of a perturbation we would have
for all times

(),

U(t>0) =Y CoeH TO(r)
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where again C,, is a constant.

If the perturbation is present however, the above linear combination is
no longer a valid solution to the Schrodinger equation.

But we can still express whatever true solution exists as a linear com-
bination of the un-perturbed zero order wavefunctions provided that the
coefficients are now time dependent.

7;6%0)
Uirt) = Y Cult)e  2O(r)

= ) Cu(t)Tn(r,t)

So let’s go ahead and start deriving some results of the time dependent
perturbation theory.

Plug our time dependent form of the wavefunction back into the general
time dependent Schrodinger equation.

., ad¥(rt)
h
T

= HU(r,t)

where H = HOO 4V (t) or H® + H(")(¢). Use whatever notation that suits
you. We then have

d¥(r,t)

G = O+ HO)w (1)

ik

Ok since the notation gets wild, we’re going to drop the (¢) in C,,(t). Just
understand that the time dependence is implied. Furthermore, just work
with U, (r,t) instead of the full expression.

d
0 1 = 3
HO + HUTY Culalryt) = in (5 Cula(rt)

HONC, 0, (rt) + HVY C 0, (r,t) = m% )Gl (r,t)]
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Expand the right hand side using the Chain rule.
O)ZC\I' (r,t) + HU EC‘I/ (r,t)

d\I/ (r,t) dC
= DO+ g ()]

<°>Zc U, (r,t) +H<1>Zo U, (r,t)

_ hZCd\D n(rt) hz d”\p( t)

The first terms on the left and right side of the last expression will cancel.
To illustrate let n = 1 for example.

av t

HOC T, (r,t) = ihC)* Lz(:)
"ﬁgo)f iego)t ie(o)
HOC (r)e” 7~ = ihC Uy (r)e —x _#

cancel common terms
HOU(r) = 20 (r)

which is our favorite eigenvalue and eigenvector relation. The sample applies
for all n so that we are left with

HOY C, U, (r,t) =ihY, Lo, (r,¢) (20.5)

Now we desire to solve this expression for the time dependent coefficients
of some state say k.

Multiply both sides by Q,&O)*(r) and recall that all states n # k of the
same basis are orthogonal.

0)*(7‘ ZC‘IJ (r,t) = FLZ 0)* (r)¥,,(r,t)

Zo O HOW, (r,t) = hzdo” O (1), (r, 1)
ZCn‘l’,(go)*(r)HU)\I;,ELO)(r)e*“%f)t = hz 0)* )‘I’(O (r)e~ (29)
' where n = k on right side
3Gy < HHO > 5 = in%e &L

n
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1'6(0)2‘

Multiply both sides by e 5~ to simplify.

10, iy dC
ZCW,<k|H(])|n>e*Tte o= ih—t
— dt
(0 _ (0)
z(e/ —en )t dC
Y G <kH n>e" 7 — = ih—t
~ dt
L0 __(0)
Let wy,, = % since Ae = hw yielding
- dc,
NG < k[HO|n > et = in—=~
dt
n
or better yet
il = 3 G, < k|HM|n > et (20.6)

This is basically a system of simultaneous linear differential equations.
In matrix notation

C; Vi1 Vmewlzt - Cq

d Co Vare 12t Vaa . Co

h— | Cs | = C

ihe | Cs 3
Ch

Now what? This expression is pretty tough to solve. So to overcome this
problem you apply time dependent perturbation theory (which is basically
making some assumptions about the size of the perturbation and in turn

what 01,02,03, ce are).

To illustrate, suppose the system starts out in state 1. Then

Cit=0) =
Colt =0) =
Cs(t=0) =

and so forth.
If there are no perturbations, then the system stays in state 1 forever.
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Our zeroth order approximation is therefore

Ci(t) =
Co(t) =
Cs(t) = 0
Cult) = 0

To get our first order approximation insert these zeroth order values into
our matrix yielding

dcCy,

ih—= = Chpo < k[ HD|n =1 > elwm=1t
de — 1 (1) — iwkn:lt
7 = o= <ElHn=1>¢
where ¢,—1 =~ 1
yielding
Co(t) = % [L < B HM|n =1 > eimn=1t' gt (20.7)

Note however that when integrating % there is actually a constant of
integration that comes out.

1 [ ot
Cy(t) = const + _h/ < k| HD|n > e™wnt dt
th Jo

where const = Cy(t = 0) = d;,,. Replacing this into the above expression
gives

1 o
Ck(t) = Ck(O) + E/ < k‘H(1)|7’L < ewrnl gt
0

or your standard textbook expression

Ci(t) = G + 2 [ < BJHD|n > et g’ (20.8)

Summary

CcOt) = 6in (20.9)

() = % Jy < HIHO|n > et (20.10)
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Two level system, sinusoidal perturbation, Schrodinger
representation

Let’s illustrate our results with a more concrete example and for simplicity
keep it to two levels (a two level system, TLS).
Recall that our time dependent Schrodinger equation is

ih%\D(r, t) = HY(rt)
where H = H© + HD
(HO + HOYW(r, 1)

d
ih—W(r,t
2 dt (T’ )

Now recall that a general solution to this time dependent Schrodinger
equation can be expressed as a linear combination of the unperturbed zero
order wavefunctions, provided time dependent coefficients.

[T (r,t) = C1 (1) T (r, 1) + Co(t) a(r, 1) | (20.11)
where
iego)t
Uy(r,t) = Uq(r)e” =
o),

1',62

T (1, t) = Un(r)e H

Now let’s be more specific with what H()(t) looks like. We want to
consider the interaction of a molecule with dipole moment w with light where
the electric field of light can be written as

€ = €pcos2mut
where v is the frequency of the radiation. Alternatively

2012)

This is going to be our sinusoidal perturbation. You can see that it will
oscillate periodically with time.

The interaction between a molecule’s dipole moment and the electric
field is then

HD = 4. ¢

HM = — - gycoswt (20.13)
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Such that

H=H®O — p. gycoswt (20.14)

We are now going to re-derive our previous expression for the coefficients.
Insert ¥(r,t) into the Schrodinger equation. Also for shorthand let the time
dependence of the coefficients be understood Ci(t) — Cy and Ca(t) — Cb.

Zh% [01 \I’1 (7’, t) + 02 \112 (Ta t)}
= (HO + HON[Ci¢: (r,t) + CaUs(r,1)]

d d
(O (1) £ i (Ooo(r 1)
— (H(O) + H(1))[C1 \I’(T', t) + 02\1’2(7'7 t)}
dCh M

d¥ (7", t) . .
T -+ Zh\Iﬁ (7’, t) dt -+ ZhCQ dt

= HOCU, (r,t) + CoWs(r, 1)) + H(C1 T4 (r, 1) + CoUs(r, 1))

d
hCq -+ ih‘l’g (T‘, t)%

d\Ij2 (7’, t)

i) L o + it r, ) Y i, t)dd—?

dt dt
= CHOW, (r,t) + CoHOWy(r,t) + CtH U (r, 8) + CoHD Wy (1, 1)

We’ve seen previously that the first terms on either side of the last equation
will cancel since they are equivalent.

HOW, (r,¢) = mM
dt
HOWy(r,t) = ihdqu—(tr’t)

leaving

RO (1, 1) L 1 R Ty (1, 1) L2 = CYHWDT (1, ) + CoHMWs(r, ) [(20.15)
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Now like before, multiply both sides by \II;O)*(T) and integrate.

R () (1) S R ()T, 1) 2

= U () HOT (r,t) + CoUO" (1) HD Wy (r, 1)

ie(o)t dC ie(o)t dC
. 1 1 . 2 2
h<2|1> R— h<22> n—=
i | e 7 +14 | e o
ie(o)t iego)t

= O <2HD1>e T + 0y <2HD2> e 5

ifg))t d02 ifgo)t i,e(20)t
ihe” 7 —= = Ci< AHMW1 > e 7 +Cy <2/HV 12> e 5
iego)f,
multiply both sides by e »
dc i(e(O)_e(O))t
md—: = C <2HV1>e 7 40y <2l HV2 >
(0 (0)
2 1

as before let wy1 = . The exact expression we get then is

ihd% = ¢y < 2 HO|1 > ent 4 Cy < 2 HV|2 > (20.16)

Now we invoke time dependent perturbation theory and assume that
since H(" is small

C; (t) ~ 1
Cg(t) ~ 0
giving
ihd2 =< 2| H(|1 > eivnt (20.17)

What now? Well, we haven’t really dealt with H(") yet. Recall that
HM = — - €gcoswi
For convenience, choose the z direction

H = — pegcoswt

z
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or

HY = e (%) (20.18)

Ok, let’s throw this into our previous expression and see what happens.

e €0 . ,
ih d: = < 2| _ /’6260 (ezwt + e—zwt)|1 > ezwzlt

dC . . .
Zhd_; = —6_20 < 2|/J’Z(6’sz£ + e*ldt)‘l > elw21t
. dCs €0 it it
Zh? = ——2 < 2|/J/Z|]- > (e t4iwa1t + e t+ th)

The term < 2|p.|1 > is the transition dipole moment.

ihd_CZ = _% < 2‘#2‘1 > (el’(w+w21)t 4 e*i(wfualt))
dt 2
dCQ iEO . e
Lo = L0 > (elletom)t 1 eilomen)
dt on < 2wl > (e Te

Integrate this to find Cy(t) but before we do this, let’s flip back to € notation
so that our final expression will be consistent with everyone elses.

dCQ i€0 - hwt+hwyq . hw—hwyy
2 =2 9,1 ( = ot *%?t)
g~ op < Amll> (e te

where fiw = hv and fuwg = fiwg — iwy = €9 — €

d02 ieo .hv+(ep—€7) chv—eoteq
— =<2 1>(e’ R e TR t)
. .(eg—€e1+hv) .(e9—€e1—hv)
e = i < 21 > (FHTRT 4 ST (20.19)
dCo

Now integrate this to get C2(t). Remember that when you integrate =2
you get an additional constant of integration which is C5(0).

CQ(t) = 02(0)+ o

where 02(0) =(512
y t 5—¢€ v ! i(eg—e] —hv ! ’
’L€0<2,u,zl>/e(z }m—»-h)t +6(2 %‘])tdt
oh 0

ieg < 2p|l > [ itamqrmn’  igoe oy,
_— e 12 +e 7 dt
0

Ca(t) = dia+
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but since states 1 # 2 we are left in practice with the 1st order contribution.
So let’s just work with it.

/ l
i(eg—e1+hv)t i(eg—€1 —hv)t ’
h

te T dt (20.20)

1 1eg<2|py|1 "t
CiV (1) = e=qull= [

So go on and integrate this expression.

i(eg—¢ v) i(eg—e€1 —hv)
cMpy = o< 21 > (" tfl)fu (" pn
2 B 2 i(ea — €1 + hv) i(ea — €1 — hv)
or
i(eg—ey+hv)t i(eg—e] —hv)t
1) _ea<2p1> | (e 7t —1 (e 7t —1)
02 (t) - 2 [ (ea—e1+hv) + (ea—e1—hv) ] (2021)

Now at this point, another approximation is made here.

You have two terms. The one with (e2 — €1 — hv) in the denominator
is called the resonant term. The one with (€3 — €1 4 hv) is called the non-
resonant term.

When hv = (e2 — €1) the resonant term will dominate. Under this res-
onance condition where the monochromatic light energy equals the energy
difference between states 1 and 2 you get

(20.22)

(e2—e1—hv)

i(cg—c1 —hv)t
Cg)(t) ~ 0<2|p|1> {ew_1:|
- 2

Note that this approximation is also called the “Rotating Wave Approx-

imation”. . oyt
Since we like math, let’s keep simplifying. Extract out e o

i(eg—€] —hv)t —i(eg—e) —hv)t
0(1)(t) 60 < 2‘#2‘1 >ei(€2—;}i—hu)t e 2h — e 2h
2 B 2 € — €1 — hv
. i(eg—e1—hv)t —i(eg—e1—hv)t
C(-I)(t) ZGO < 2‘“2‘1 >ei(527;}ifhv)t e 2h — e 2h
2 (e2 — €1 — hv) 2i

resulting in

ie i(eg—eq1 —hv)t . o
o) ~ e i ()] 009)
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Ok, let’s keep going. Recall that the probability of being in a particular
state k is basically

Py = |Gy ?
Therefore the transition probability into the final state 2 is

P, = |Ca(t)f

2 2 _ _
el < 2|ps|l > | a2 (€ hv ;
(e2 — €1 — hv)? 2h

The final transition probability into state 2 is

eo—e1 —hv)

9 sin, (€2 €1 hu)t)
Py = | < 2.1 > | | “—F (20.24)

Note that P is Py(hv,t). It depends on both time and frequency.
Finally, more generally, if you didn’t take the time dependent perturbation
theory approach and C(t) is not necessarily 1 and Ca(t) is not necessarily
0, you can solve for C(t) and P;(hv,t) as well as Ca(t) and Py(hv,t)

Starting with

&,
dt
= C‘IHU)‘I’T (ra t) + CQH(])‘IJQ(T” t)

d
RO (r, t)% iR (r, 1)

Multiply both sides by \IISO)*(T) and integrate.

(0, dC' —"E(O)tdC
h<ll>e 7 d—1+ih<1|2>e # d_:

©), ©,

7,6 —i€

= Ci<1HY1>e 7 +C<1|HV2>e 7

715( )t dC1 ( ) 7“%0)15

ihe ™ —— Cy <1HD1>e 7 +Cy < 1HD2> e 7

ie(o)t

Multiply through by e %~ to yield

i 0 _ 0y,
2 =y < 1HODL > +Cy <1HM2> e 7 | (20.25)
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Likewise we found before that

W42 = 07 < 2/ HW|1 > elwnl + Gy < 2/HM|2 > (20.26)

Putting it all together in matrix form we get

’Lhi 01 _ <1‘H(1)|1> < 1‘H(1)‘2>67@'w21t 01
d\Cy) — \<2HD|1 > et <2HV|2 > Cy

(20.27)

You are now forced to solve this explicitly (as we will do in the next section).



Chapter 21

Rabi Solutions, Schrodinger
Representation

Rather than do time dependent perturbation theory, let’s solve the two
level system considered previously exactly. This will help motivate why the
perturbation theory approach is convenient.

We have from before where C = C(t) and Co = Ca(t)

d .
m% = O <1HY1 > +Cy < 1|HMD|2 > g7zt
e 1) it 0
’Lh? = 01 <2|H ‘1>6 21 +02 <2‘H |2>

Now suppose that < 1|HM|1 >=< 2|H"|2 >= 0 at all times. This
condition is satisfied by many common types of perturbations.

Now we are left with

iR = Cy < 1|HM|2 > e~ iont (21.1)

th=52 = (1 < > elw21 .
hi%2 = 0y < 2[HD|1 > efwnt 21.2

Note that we are not invoking a time dependent perturbation theory ap-
proximation here.

Let’s introduce H(") = — 1 €egcoswt our sinusoidal perturbation now and
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get more explicit expressions just like we did last time.

dcC |
ihd—t] = Cy < 1| — pregcoswt|2 > e~ tw2it

dcC ‘
Zh_dt1 = —0260 < 1|/’LZ|2 > e*lw21tcoswt

—d01 . eiwt + e*iwt
h = —C < 1 . 2 > —dwa1l e te ™
at 260 < 1p-[2 > e ( 2

leaving
ih% = _% <12 > (e*i(wm —w)t e*i(w21+w)t)

Now for the other expression

dCs

ihﬁ = C) < 2| — p.egcoswt|l > e'w2tt

iﬁdd—ctb = —Chey < 2|p|1 > coswte™21!

z'?'LCld—i2 = —01260 < 2pg|1 > et (et 4 gm0l
leaving

zh% = —% < 2|p]1 > (ei(“’21+“’)t + e"(w21+“’)t)
Summary
R0l = G20 < 1|y, |2 > (e iwm @l 4 gmilwntwlly
ini — i 9 11 > (ellem t)l 4 gilen o)ty

)

(21.3)

(21.4)

(21.5)

(21.6)

Now to simplify things, let’s just look ahead and see that the Rotating
Wave Approximation allows us to drop some terms near resonance. Specif-
ically e #(«21+@)l i the 1st expression for 21 and e!“@21+) in the second

i
expression for dd—?

This leaves us with

.2 dCy (& —i(ws w)t
ihept = —=&0 < p.l2 > e (w21tw)

.2 dC- i _
zh% = ——CI;O < 2p.|1 > eilwar—w)t

(21.7)

(21.8)
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Ok, since we're not doing time dependent perturbation theory how do we
go about solving this system of coupled differential equations. There are
several ways, among them Laplace transforms. But here we will simply end
up substituting one expression into another.

Take the second derivative of the second expression (dont forget that

Gy = Ci(t))

d202 €0 d i
" = —— < 2u,|1 > — O
d>C ; ; dC

ihT; = _6_20 < 2021 > [Chi(war — w)el ) 4 el(wQIW)td—;}

, d?Cy €0 (w1 — )i+ dCq

ih—m = —5 <2Awll> ez iCy (war — w) + wral
where we know that ihddl = &0 < 1)5,(2 > e7@2—)t We replace
ddctl = 702“ < 1 pa]2 > e il —wit 1nto the above expression resulting in

20 . C -
ihT; = _650 <21 > B iCy (wp — w) + - 22h€0 < psf2 > 7027

d?C. Cae

dt; = % < 2[p|1 > @2 Oy (wa — w) + —2 " 0 < 1, |2 > e ez

d*Cy ooyt Co€d

= 2h<2|uz\1>(w21—w)01e( 21 >LH;\<1M2>\2
where from ihdd—CtQ = —C19Q < 2|p,[1 > e'@217) one gets Cy = 72:(? <2‘J “>)e_7"(“’21_“)tdd—0f.
Plug this in and keep evaluating

d>Cy , dCy  Caéd
72 = Z(W21 - CU)W — 4h20| | |2 > |2
or
L 4w —wn )i + DG 2> 2= 0 (21.9)

This is now a second order homogeneous differential equation.

In general, the solutions will be exponential-like Co < e* but A may
be real or imaginary. Let’s just say A is imaginary to save time. Assume
a solution of the form Cy = et and replace this into our second order
differential equation.

dC: .

_dt2 = i\

d>C: ) )
T2 z')\(z')\)e“\t = —\2eM

dt?
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Therefore
d’Cy . dCy  Chel
7 +i(w — wm)ﬁ + HQO‘ <1pl2>1>=0
becomes
2
CAZEM 1w war)ide™ + e”‘t%| <lp2>2 = 0
drop e
: B < Up.f2 > P
—A —(w—w21)/\+ 172 =0
leaving us with
2 2
A2 4 Aw — w) — ASTE2E g (21.10)

This is a quadratic equation whose solutions we all know.
For sake of notational simplicty, call the last constant ¢ and (w—wa1) = b.

XN 4bd—c=0
)\_—bi b2 +4(1)(c)
B 2(1)
2| <1 pz|2> 2
N (w—wa) £ \/(w7W21)2+W
2
The two roots are then
, 2
A=)y 1 )+ B < 12 > P2 (21.11)

Al< 1| 2> 2
2 0

For even more notational simplicity, let A = (w—ws1) and = \/ (w—wa)?+ =

This reduces our previous roots to

A=-5+% (21.12)

Our general solutions are therefore
Cy(t) = Ae-2+5 4 Beil-3-5)

where A and B are constants that are determined by the initial conditions
of the problem.

—102t

) (21.13)

Ca(t) = 6_%(146% + Be
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Ok, now that we have Ca(t), what next? Well, let’s go find C;(t). Take
Cs(t) and take its derivative so we can evaluate Cj. First let’s rearrange
things a little.

dC: C (o
Zh—2 - _ 1€0 < 2‘,“/2‘1 > ez(w21—.;.))t
dt
c, = —2ih e*i(wm*W)id_C2
€0 < 2|p.l1 > dt
where A = (w — wo1) giving
Ci = *7€0<22|iu>6mtdd—(’? (21.14)
Now plug in % to determine what C; is.
o, = Aes(—A+) + Bes(—A-Q)t
% Ag(~A+Q)eRCAT L BL(A - @)ed(-2-

so that now plugging this into C'1 gives

= 2ih ial 3(—A+Q) i-a-ay
1At
fie 2 it —io
Ci = P TR SIPAR >[A(—A+Q)e 2 + B(—A—-Q)e 2 ]
leaving
he'2t i —is
C = €0<’2€|HZ“> [A(FA+Q)e2 +B(—A—Q)e2 | (21.15)

This is our desired expression for C'(t).

Summary

iAt
he 2 it —iQt
t) = ——JA(-A+Qe2 +B(—A Qe 2
Ot) = LA A+ + B-A - )P
N it

Co(t) = e 2 (Ae'? + Be o)

Now what, well we still have to solve for the coefficients A and B. Re-
call that A and B are determined by the initial conditions of the problem.
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Suppose at ¢ = 0 the system was definitely in state 1. Then C;(0) =1 and
C2(0) =0.
From this we get

Cy(0) = 0
= A+ Borthat B=-4

Use this in C7(0) to get

h

= L[—A+Q+A+9] =1
€0 < 2|pxl1 >

_ AR2Q _

e < 2pll>

From this we get our desired coefficients

€| <2 Z ]>
A= o<Zull> (21.16)
B = @<2kl> (21.17)
- 2nQ) *

Plug these back into our expression for Ci(t) and Ca(t).

1AL
fie 2 €0 < 2|p|1 > i €9 < 2|p;|1 > it
t) = —A+Q - (-A-Q
Gi(t) eo<2|uz|1>[ onn AT e TR e
1At

Ci(t) = h;; [—Ae% 1 QT+ Ae 2 + Qeﬂém}

o e 5 e

e e e e?2 —e :

Ci(t) = o [Q ( 5 ) — A (721' )]

1AL

Ot Qt
Ci(t) = 65 {Qcos? - z'AsinE}
Ci(t) = 2" [cost — L sinil] (21.18)

Desired final expression for Ci (t).
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Now for Ca(t)

Colt) = L =iat |:€0 <2pa|1> s ep < 2|ps|1 >e#}

2hQ 2hQ
Colt) = i€g < 2|p|1 > =it e — e
2= O 2
Co(t) = os2i=l> =5 iy U1 (21.19)

Desired final expression for Ca(t).

Summary

Ci(t) = e2 cos—- — ﬁSWE
; 2|1 —iAt Ot
Co(t) = to < Sla2 > h|(l; | >e%sin?

Now one can calculate the coefficients at any time after the perturbation
has been switched on.

Now let’s derive P; and P» the probabilities of being in states 1 or 2 as
a function of time. Recall that

P(t) = |Ci(t)P
Py(t) = |Ca(t)?
We get
Ot 20t
P = 00527-1— > sin?

2
A Qt
_ 2 - 2 2
= cos"— + > (_Q) cos”—
A\? ANl L0t
- (5) * 1_<5> sy
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2 2
where recall that A? = (w — wor)? and Q% = A? + @ﬁ so that
2 2 '
02 _ A2 = ﬂﬁ We get

2 2l<2fu1>]?

(8)" + AlZlp=l21 5522 (21.20)
2 2

Py = A2 I] 20 (21.21)

These are the final expression for the probabilities of being in either states
1 or 2.

Note that Py + P, = 1 as expected.

Now finally to end this, at resonance (w = wa1), A = 0 so that Q? —

2 2
eg|<V|p=|2> 1 2
0‘ ‘7322| _l or Q — —60|< ‘ﬁ'l/tl| >|. We get

Py = cos?@=lp=2>1 (21.22)

Py = sin? @<= 2>1 (21.23)

so that the populations of states 1 and 2 oscillate in time.

o<1 |21 . .
You can see that when % = %, P, =0 and P, = 1. Likewise

when % =7 we get Py =1 and P = 0. This is where the terminol-

ogy 5 and 7 pulses comes from. You will often hear of such pulses in NMR
terminology.

Finally, apart from demonstrating the Rabi oscillations and Rabi formu-
las, you can see that solving these differential equations gets tough pretty
fast. This was a 2-level system. So as a consequence, people generally resort
to time-dependent perturbation theory to solve things.



Chapter 22

Multilevel absorption,
Schrodinger Representation

Ok, lets do this again. Practice makes perfect. This time do not assume a

2-level system.
Start with the electric field of light

€ = €gcoswit

The interaction between the molecule’s dipole moment and electric field
is then

H(1) = —U-€

= —u-€coswt

Choose the z component for convenience.

gl = — [, €gCOSwWit (22.1)

The Hamiltonian is then
H=HO g

or

H=H® — 1, coswt 22.2
7

The time dependent Schrodinger equation is

dv,,(r,t)

i
T

=HWY,(rt)

179
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where a general expression of U, (r,t) is a linear combination of zero order
wavefunctions with time dependent coefficients.

—i€y )t

Zo &)U, (r)e

U(r,t) =5, Cn(t)V,(r,t) (22.3)

Replace the general wavefunction into the time dependent Schrodinger
equation.

. d :
ih— ; Cr ()T, (r,t) = (HO + HM) ; Cr ()T, (1, 1)

mz {0 () —d%;g’ 2 + U, (r,t) dcgi(t)}

H(O)ZC n(7r,t) +H1)ZC U, (r,t)

n

The first two terms on either the right or left hand side will cancel since
they are equivalent.

dv,,(r,t)

2o Wnlnt)  _ oq g
thC,, 7 HYC, U, (r,t)
mdwj‘l—(f’t) = HOWU,(rt)

So once these terms are dropped we are left with
hy W, ( t = Ch(
3 ¥l o HOD.

Now multiply/integrate both sides by ‘I’g))

_“fn t dC

—ie(o)t
; = M i
zhz<k\n>e T = zﬂ:C’n<k¢|H n>e h
on the left side you can see that n = k
—ze(o)t dC —ieglo)t

; — M
ithe el zn:Cn<k|H n>e n
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if(o)f,

Multiply both sides by e 5~

dc i Dy
md—t’“ = zﬂ:on, <klHOn>e =

where wy,, = (Ek;’”) leaving

ih9C — C,, < k|HM|n > ewwnt 22.4
dt n

This is our desired expression.
Now you have this expression for every state. To simplify, take a time
dependent perturbation theory approach and assume an initial state m.

Cn(t) ~
Cn;ﬁm (t)

2
o =

d .,
HE = O(t) < HHOjm > oot

ih4Sk =< k|H|m > elormt (22.5)

Our perturbation theory approximation.
Now recall that H(") = —p,epcoswt.

dcy, ,
ihd—tk = < k| — p.egcoswt|m > “rmt
o iwl —iwl .
ihd—tk = —ey < k|p., (%) im > "kt
dcC , »
ihd_tk _ _650 < k|Hz|m > <61,(w+wk,m)t + e—l(w—wkm)t>

Solve for Cj(t).

dCy _ e <klpzlm > ¢ ioiu i wpm)t
ar M (e te >

Inegrate this expression. Recall, however, that when you integrate % you

also get a constant of integration.

Ck(t) = Ok(t = O) — % /O el(.u-l—wkm)t + e*’(w*“’km)t dt
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but Cx(t = 0) = gy, giving

t ; ,
Ck(t) = 5]677’1 _ w/ ei(w+wkm,)t + efi(;ufwkm)t dt’
0

2ih
We get
cOt) = 6pm (22.6)
(M) _ eo<k|pzlm> t i(w—l—wkm)t, —i(w—wkm)t, !
Cl(t) = 5= e +e dt (22.7)

Focus on the first order term and integrate it.

< k‘#’ ‘m > ¢ 3 ! il — ! !
0(1) t — 760 z 'L(w+wkm)t ’L(w wk'm)t dt
k ( ) —2ih A e + e
B €0 < k|p,|m > (6i(w+w1cm)t —1) (efi(wfwkm)t —1)
i(hwthwp —hwm) —i(hw—hwi+hwm)
e <kulm > [T pp (@R )
B 2h (hw + hwy, — hwpy,) (hw — hwy, + hwy,)
i(hv+tep—em) —i(hv—eg,+em)t
e < E|pzlm > (e% -1) (e% —1)
2 (hV + € — em) (hV — € + Gm)
(1) <k| | S ( i(‘kfﬁ;in“rh”)f/ ‘|) ( i((kffr%n—h,u)f, :
Ck (t) == lgz l ’ (ex—€m~+hv) = (ex—em—hv) (228)

The first term is the non-resonant or anti-resonant term. The second term
is the resonant term.
When hv = €, —¢€,,, the resonant term will dominate. We can drop the 1st
term as an approximation. This is called the Rotating Wave approximation.
i(eg, — em —h)t
€0 < klp.lm > (e P —1)

1
CI(“ )(t) = 2 (e — €m — hv)

i(ep —em —hv)t

Pull out e 2h like before.

i(c(®) _(0) i((0)_(0)
i(e, ' —epy’ —hv)t —i(e, ' —em’ —hv)t
OO _poyt e — —e A

; k . i(e
c () ~ P0 < Klzjm > 1

21 €, — €y, — hv
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i(ep—em—hv)t

This is our desired time dependent coefficient.

Now let’s find the transition probability.

P, = [Cy(t)]?
&g < klplm > 2

[(ek — €m — hv)t
n
(€x — €m — hv)?

2h

]

.9 {(ek—em‘—hu)t

Py = | < klpzlm > P——F1 (22.10)

This is our desired transition probability.

Some extra stuff now. For perfectly monochromatic light and when
hv = ¢, — €,, what happens? To evaluate this apply L’Hopital’s rule which
states that if

lime.f(z) = 0
limy—eg(z) = 0

where in both cases c is finite, then

f
()

~—

) flz )
limg_se——= = lim,_,.

9()

Q

Recast Py, in terms of 2 = (e — €, — hv)

. 2 [xt
sin“ |2
P. = €| <klp.jm> Q—xQ[QFJ
2sinttcogit L
limg_ 0Py = €| < klps|m > |? [ 25233 3 2%
t . Tt
= ) sin (%

. t sin (&
P = < Hpsm > (£) (M)

xT
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Use L'Hopital’s rule again.

limy_0 Py

2 cos (ﬁ)
I - P 2 k . 2 h
imeoPe = @] < K> (5 [—1

2\ lim,_gcos’d
) B 9 2 €T h
limgoPy = €| <klplm > | F) limg, 01
2 2 2
lim, 0Py = €| <klpzlm > | H)

limy 0Py = €| < k|u|m > |2 (%) (22.11)

So in principle for perfectly monochromatic light exactly on resonance with
the transition, the transition probability will increase quadratically with
time.



Chapter 23

Rates, Schrodinger
Representation

Since we have the probability of a given transition we desire the rate of
the transitions. This is evaluated as the rate of change of the probability.
Consider some examples provided below.

Sinusoidal perturbation, monochromatic light

In the case of a sinusoidal perturbation we derived the general transition
probability of the form

P = |G
Si?’L2 [(Ek—ﬁg%—hy)t}

= 6(2J|<k‘/%‘m>‘2 (€5 — €m — hv/)2

Let’s simplify and consolidate our notation by letting (&, — €,,) = hiy. We
get

. 9 | (hvg—hv)t
sin |:—27i

(hvg — hv)?

P, = €g| < k|pz|m > |7

Now convert to w and wg notation since hv = hw.

. 2 | (wo—w)t
_ | < k|u,|m > |25 [ p) }

ﬁ2 (wo — w)2

Py

185
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Now let = (£0-%) so that (wp — w) = 2z.

| < k|p.|m > |2 sin®(xt)
R 42

| < klp.|m > |2 sin’xt
45> z2

dPy,
dat

P, =

Now the transition rate is R =

dPy
dt
2 2
< klp.im > ,
= ol "l; m > | 2sinxt(z)cosxt
4h*x?
2 2
= € < Klpzlm > | sinxtcosxt
2R’
2R’ 2
3| < k|p|m > |? sin2xt

4h? x

R =

Now replace x = (*%5-*) into the above expression to get

R = 2| <k|pzlm>? sin](wo—w)t] (23.1)

212 (wo—w)

Note that the transition rate will oscillate with time. It is not constant.

White light perturbation

Here we will expand on our perturbation theory result for monochromatic
light and expand it to encompass the case where we have a spread of fre-
quencies or in the extreme case, white light.

For simplicity, assume that we are dealing with a continuous (white)
distribution of frequencies p(w) is constant or ”"uniform”.

Starting with the general time dependent perturbation theory expression
for the transition probability of a sinusoidal monochromatic perturbation we
have

P = |Gy
|2 Si'nZ { (ekfeg;ifhl/)t]

6l < K > P
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Let’s consolidate our notation again for convenience fiwp = (€ — €.

2[(w0;w)t]

| <klps|m > |2 sin

P,
F ﬁ2 (wo — w)2

Now this expression, as noted, is only for one frequency. To get an equivalent
expression for a spread of frequencies we must integrate over the entire
distribution of w.

2 wp—w

oo 2 2 45
2| < klu,|m > |2 sin
Prtor = 0 2 d
ktot /0 h2 (WO — L())2 p(w) ol

where p(w) is the density of w. But since p(w) is constant call it pg

2 2 00 i 2W0—W
<k > sin t
Prior = | lpzfm > / —2 _dw
0

h2 (wo — w)2

To further simplify things, let the bottom limit go to —oo. (The inte-
grand doesn’t really contribute significanlty here anyway)

2 2 00 gim2Wo—w
eg) < klpyim > sin~=0=¢
P = 0| ‘ ;‘ ‘ 0/ 2 2dw
1) —o0 (wo - LU)
Let z = (“27“)t and dz = —%£dw. Also remember to change the limits of
integration.
2 2 —00 of,2
€5 < Elp,/m > | sin“x ((—2dz\ o
P = 20 _— t
ktot h2 Po A2 n
2 2 —00 s 2
€5l < k|pz|lm > sin“x
R
2% oo T
_egpot| < klpsm > > [ sin%:dx
B 252 o a2

Look up the integral and find that ffooo ”Z#dm = .

_ e3pot| < k|p.|m > [*7
2R

Pktot

2 2
egpom| <k|pz|m>|*t
il (23.2)

Pktot =

Desired transition probability for white light excitation.
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Now what is the transition rate?

_ dPuoy _ cbpom | <K|pz|m>|?
R = e — Broml<Hy (23.3)

Note that this time the rate is constant, not oscillating with time. Also this
is basically Fermi’s Golden rule (actually his 2nd Golden Rule) when recast
not as white light but as a spread over multiple final states.

Sinusoidal perturbation, monochromatic light, re-
dux

Let’s assume a 2-level system again. Assume also a sinusoidal perturbation
and assume monochromatic light. Derive the transition probability from
state 2 to state 1. (Recall that in the first example we did the transition
from state 1 to state 2. This is just the reverse.) Assume that ez > €.

Start with the form of the perturbation
€ = ¢gcoswt

HY = — €= —U - €gcoswt
For simplicity take the z component leaving
HO = — [, €gcoswi

The form of the wavefunction is a linear combination of zero order wave-
functions with time dependent coefficients.

U(r,t) = Cu(t)Tn(r,t)

Since we only have two levels
U(r,t) = Ci ()W (r,t) + Ca(t)Va(r,1)

where

Ui(rt) = Wi(r)e i

—iegt

Uy(r,t) = Wy(r)e n

The time dependent Schrodinger equation is

dw(r,t
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where H = HO + H((t). We then have

ih%‘lf(r,t) = (HO + HOYw(r 1)

Zh%{(}ﬁ Uy + CQ\IIQ] = (H(O) —+ H(1))[C1 Uy + 02\112]

where the time dependences of Cy,Cs, ¥, ¥y are understood. Expanding
we get
A AU, dCy dCy
ihC1—— + ihCy—— + ih V) —— 4 ihWo——
z 1d+l 2dt+l 1dt+l 2
= CHOY, + CHOU, + i HOO + CoH O,

from before we know that the first two terms on either the left or right hand
side are equivalent and will dissapear leaving

dc dc
ih T, d—1 + zh‘llgd—; - HOO, + 0, HOW

where recall that

‘111 = ‘1’1(7’)6 Zﬁqt

—tegt

‘112 = \I’Q (7’)6 |2
The equation then becomes

dC 1€ —i€
—|—Zh\I’2d—t26 ﬁ2t =CH (1)\1’16 ﬁ +CQH( )\1126 ﬁ2t

. dcC'
1h, d_t16 B

Now recall that we want to know more about C(t) so multiply/integrate
both sides by WiV,

C] —’L€§0)t 02 —ze(o)f
ih < 1|1 > — h <12 g
ih <11 > T +ih <12 > —= pra 3

©) ©),

ie t —i€,

= C<1HV1>e 7 +C<1|HV2>e 7

Use the normalization and orthogonality relations between states 1 and 2 to
simplify. This leaves

dC1 —iego)t _“(0) é)
ih—e 7 =Cy <1HD1>e 7 +C <1/HV2> e 7
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1'6(0)2‘

Multiply both sides by e 5 to get

p 00,
m% =y <1HM|1 > +Ch < 1|HM |2 > e 7

(e2—€1)

Let w1 = 7

hd = 0y < 1/HM|1 > +Cy < 1|HM|2 > e iwat (23.4)

Now invoke a time dependent perturbation theory approximation and say

CQ(t) ~
Ci(t) 0
This gives
hi =< 1|H(|2 > eiwnt (23.5)

Now recall that H(") = —p,epcoswt

dC
ihd—; = < 1| — p.epcoswt|2 > e

—iw21l

—iwo1t

= —€ < 1|p,]2 > coswte

(& 4 =ity
2

= 75 < 1|p)2 > (ei(w—Wm)t + e—i(w+w21)t)

efi;uglt

= —€ < 1p.]2 >

Ok so we have to integrate this approximation.

dC; _ € < 1|/~‘LZ|2 > i(w—wa1)t —i(wHwar )l
= e )

Note that when you integrate dd—(’;l you also get a constant of integration

1) p-]2 iy ' RO
O] (t) _ O] (t _ 0) B € < 27/};—7: ‘ > /(; el(w*wm)t + 671(.‘1—&-.‘121)15 dt
but C; (t = 0) = 019

€0 < 1p,|2 >

t I4 !
Ci(t) = &0 — i(w—w21)t —i(wtwai)t dt’
1(2) 12— /o e +e



191

So we have

¥t) = o

0(1) €g < 1‘#2‘2 > [t i(wfwm)t/ fi(;u-&—wzl)t, !

V() = ———m— | e +e dt
2ih 0

of which we will work with the first order correction 01(1)(75).
Ok, let’s continue

't 1|p.|2 ; : N
01(1)(15) _ /O_eo< || >(i(w—w21)t +efz(w+w21)t)dt

2ih
t ’ 7
_ o <lp2> / gilomwn)t | milwtwan)t gy
2ih 0
_ e < 2> (et 1) (et )
- 2ih i(w — war) i(w + wat)

€ < 1‘#2‘2 > (e*i(wm*w)t _ 1) N (efi(wm-}—w)t . 1)
2ih i(WQ1 — w) i(wm + w)

€ < 1p,[2 > | (e i)t 1) (gilwartw)l _ 1)
2h (w21 — w) (w21 + w)

At resonance the 1st term will dominate. Therefore we can drop the second
term. This is called the Rotating Wave approximation.

€ < 1‘/'Lz‘2 > (e_i("-’21—w)t o 1)

h (t) =

2n (wa1 — w)
—i(wg1 —w)
Divide out e+t
' —i(wgg—w)t —i(wy —w)t i{wag —w)t
Oty — 60 < [ > T [P
o h (wa1 — w) %
dco<ps 2> Mem(y)f
Cit) = =5gfze™ 2 ——2t 9256

This is our desired expression for Ci(t).
Now for the transition probability.
o= |Ci(t)P
el < 1lp|2 > |? sin® (25==) ¢
52 (Wm — w)2
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B B 2 w21 —w
< a2 ? i (2B )
h2 (w217w)2

P =

(23.7)

Note that this is the same probability in the reverse case which we derived
earlier.

. 9 aim2 [ Y21 W
P Bl<2ue1>p2 sin? (B2 )e
2 = 72 (w21,w)2

(23.8)

The probability of stimulated emission is exactly the same as the probability
of absorption for this case of a harmonic and monochromatic perturbation.

This is basically the equivalence of the Einstein B coefficients which
we will discuss later. Note also that this and its counterpart problem say
nothing about spontaneous emission (described by the Einstein A coefficient
described later).



Chapter 24

2nd order time dependent
perturbation theory

2nd order time dependent perturbation theory
and Schrédinger /Interaction pictures

Suppose we want expressions for higher order time dependent perturbation
theory. Recall that I said that you simply take the 1st order solution and
plug it back into a system of coupled differential equations (our matrix if
you will).

1 t ) ,
C]S)(t) = E/O <7€|H(1)|n>ew’“”t dt’ 1st order solution

This expression above was for initial state n and final state k. Let’s just
rename the labels to prevent confusion. Call our initial state m and our
final state n. So £k — n and n — m.

1 [t . ;

Now feed this expression into the right hand side of our original coupled
differential equation expression

. dCy _ ) iwWpnl
zhﬁ = zn:Cn<k|H in)e'“r

So rather than assume C,,(t) ~ 1 and C,,(¢) ~ 0 etc. (1st order time
dependent perturbation theory) we feed it in the 1st order solution:
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Zhd_C’“:2<k|H(1)|n>eMk”t 1 /t<n|H(1)m>eM"mt/dt’
dt ~ ih ) Jo

i 1 e ) et
B, k H Wit H LWwWnmt dt
e = o SO me [ ol HOlm)e

n

ac? 1 | (— i
==Y (k|H")|n)ennt /<n|H Jm)ermt' qt!
dt R? 2,; 0

Now integrate this expression to get Clgz) (t)

O () = 5 S, fodt (K HO|n)est [ (n|HO [myerm"at” | (24.2)

This is our desired second order contribution. Recall that & is our final
state, m is our initial state and n interestingly turns out to be an inter-
mediate state. So even if the matrix element in 1st order time dependent
perturbation theory (k|H(|m) directly linking the initial and final states
is 0 thus we can get a transition between m and k indirectly through an
intermediate state.

Extension to higher order time dependent perturbation theory. Ok — so
it’s possible to go to higher orders but typically what happens is that people
switch from the Schrodinger representation which we have been working in
to what is called the interaction representation.

We will describe these “pictures” of quantum mechanics shortly but for
now let’s just go through the motions and see what the expressions look like.

First recall that exponentials have a corresponding Taylor series approx-
imation

_1 x?
e’ E+ +—+—+ Zl'

Therefore,
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zHot zHot)l

Z(

_ (1_Zi°t+...)|n>

=|n>_‘Hh°t|n>+...

—|n)— ‘eot n)+...  (since Holn) = eoln))

()

=e - |n)

So our desired equivalence which we will need is that

tHpt 7,6015
e |n)=e"

- n) (24.3)

Now note that

7 6(0)—6(0) t
. k n
(k| HM |n)ernt = (k|HD|n)e™ 7 )
(0) (),

= e (HHO p)e

O . (0),

= (kle i HMe™ " |n)

— (k| HD e n)

using our equivalence above.

Now define

(K| HO [n) = (k|e™# HNe 5 |n) (24.4)
or alternatively

(k| HOn)y = (kle™™ HM e 5 n)

“I” for interaction.

an[ = ‘/kn
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but remember that it is H(") that is getting changed.
Now reintroduce this notation into our previously derived expression for

C,EF) (2nd order time dependent perturbation theory) contribution.

0152)@) = %2/0 dt/<kH(1)n>eiwknt’/ dt" (n| HO [m)einmt”
1 L , v . o o
=n22/ dt/ dt" (k| H (¢))| ) (n| HY' (") | m)
k‘ [—/ dt/ de" ;g Z‘n n\HU (t")] |m>

But ), |n)(n| =1 from the completeness theorem (or closure relation),

CcD(¢) = (k] {—# Jlar [t dt"H(”'(t’)H(”'(t”)} Im) (24.5)

Now generalizing this to get the nth order contribution

Olgg)(t) — <k| {(Z%T f(;‘ dt! Jg' dt" fgu dt///H(1)/(t/)H(1)/(t//)H(1)/(t///)} ‘m>

(24.6)

for the 3rd order contribution and

C}i“)(t) — (k‘ [(11T)4 fOt d+ f(; d+" f(l)f ¢ fOt dt////H(1)’(t/)HU)’(t//)HU)’(t///)H(1)’(t////) |m>

(24.7)

for the 4th order contribution, and so on for higher order contributions.
The whole thing can be put together as

Cr(t) =) + V() + P (1) +

or
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_ 1 1) ! B (1)/ ()/
Cr(t) = (K| 1+m/ dt'H' (m)?/ dt/ dt"H ")+
+ St
G /dt/ dt”/ dt" HO' @Y YHO @ YHM @) + Im)
= (k|U(t)|m
(24.8)
where

t/
U(t) —1+—/ dt' HV' (¢ GE /dt/ dt" HO' (¢ YHO (") +

! !
W/ dt'/ dt”/ dt'”HU)'(t/)H(U’(t//)HU)’(t///)_|_”_
0 0 0
(24.9)

is called the Dyson series
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Chapter 25

Three pictures of quantum
mechanics

The three pictures we are referring to are called the Schrodinger, Heisenberg
and Interaction Representations.

You saw that in the previous section that we dealt with fairly long ex-
pressions for the 2nd order contribution C,(f) in time dependent perturbation
theory. It gets even longer in 3rd order and higher. We also saw that things
could be simplified if we took the e**n’ terms in the integrals and split
them into two and eventually pulled these exponentials into < k|H m\n >
leading to < k|/H™"'|n > or H(" — H()', This switch is more than just a
convenience. It basically represents transitioning from one representation of
quantum mechanics into another.

There are three standard representations or picture of quantum mechan-
ics. They are called the Schrodinger, the Hiesenberg and Interaction repre-
sentations. By default we have been working in the Schrodinger representa-
tion all this time.

Schrodinger Representation

In the Schrodinger Representation

e state vectors (or wavefunctions if you will) have time dependence

e operators are time independent

Start with the standard time dependent Schrodinger equation.

d
ih = [ U(t) >= HIU(t) >,
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If the Hamiltonian, H, does not depend explicitly on time we can imme-
diately integrate this to get

dV(t) > _ H,  —iH
() >, ih n
i Ht
In|U(t) > = —ZT + const
|U(t) >, = e#(const)

where (const) = |U(tg) >5. We get

—1Ht

W(t) >s=e"n |P(tp) > (25.1)

Here

—iHt

U(t) = e~ (25.2)

and is referred to as the time evolution operator. So you can see that in the
Schrodinger representation state vectors evolve in time.

Now the generic operator A, is time independent in the Schrodinger
Representation. It’s expectation value < A > however evolves in time as
dictated by the time dependence of |¥(t) >

<A() > = < U(t)sAs|T(t)s >

= < U, (to)]e T Ae TR |y (to) >

Heisenberg Representation
In the Heisenberg Representation
e State vectors or wavefunctions are time independent

e Operators however are time dependent

So we have | U (t) > time independent. At t =0

[[V1(t0) >= Wa(to) >| (25.3)

The Schrodinger and Heisenberg state vectors are equivalent at t = 0.
More generally though, the Heisenber state vector is defined by

Uy (t) >=e'® [T, (t) > (25.4)
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but you recall that

so that

iHt —iHt

‘\Ifh(t) >=eh e h ‘\Ifs(to) >= |\Ifs(t0) >

We are then left with

W5 (t) >= [Vs(to) > (25.5)

showing the time independence of the Heisenberg state vector.
Regarding operators, since expectation values are invariant to the change
of representation for a generic operator A

<A> = < U (H)|A|Ts(2) >
= < U,(to)|e ™ Ae T, (tg) >
< ‘Ifs(to)|Ah|‘Ifs(t0) >

| < A >=< Uy(to)| 4|V (t0) > | (25.6)

since |¥p(to) >= | ¥4 (to) >. Furthermore

iHL  —iHL

Ap=en A n (25.7)

and you can see that this definition of the Heisenberg operator will evolve
with time.

Interaction Representation

This representation is used when the Hamiltonian has a time dependent com-
ponent. It is an intermediate picture between the Schrodinger and Heisen-
berg representations in that both the state vectors and operators will evolve
with time. However their time developments are governed by different parts
of the total Hamiltonian H = H© + H(¢).

The evolution of the operator is dictated by the time independent com-
ponent H©®. The evolution of the state vector is dictated by H(")(t) the
time dependent component.

Thus the interaction picture is intermediate between the Schrodinger
picture in which only the state vectors change in time and the Heisenberg
picture where only the operators are subject to time development.
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Chapter 26

The interaction
representation

The time dependent Schrodinger equation is
d
ih%\\lfs(t) >= H|U,(¢t) >

where we have explicitly used “s” to denote that we are working in the
Schrodinger representation. Here

H=HO_ g

where H® is time independent and H(") may or may not have time de-
pendence. In the case we are concerned with H(" is a function of time
HM(¢).

To derive results of the Schrodinger representation we define our inter-
action representation state vector as

ir(0)y

|Ur(t) >=e 7 |Uy(t) > (26.1)

and also note that at ¢ = 0 the wavefunction is equivalent to the Heisen-

berg representation wavefunction. To better see this, recall that |U(t) >=
—iHM )

e "W, (t,) > But H=HO + HO(t) so that [¥;(t) >c e 7 . You
see tat it will behave in time as H(").
We want to re-express our Schrodinger representation in the interaction

representation so

i (0)

T,(t) >= e F | W (t) >
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and plug this into the above Schrodinger equation.

m—{“’{ W (t) } (H(°)+H(1)){

dt ®) >}

Use the chain rule to evaluate the derivative.

_in®, d|U () > iHO _ipo
ih[e a | Id(t) —Zh e t\‘1’1(t)>]
im0
(HO + HO)e™ % [wr(t) >]
—irr(0) d|‘IJ[(t) > —ir(0)4

ihe™ 7 T+H<0>e | Wr(t) >

|lI!1(t) > +HVe™

71,H

= HO,

(t) >
Cancel the common terms leaving

,,H(O)r d|\IJ[(t) > (1) —1H( )t
dt

ihe™ n

r(t) >

10y
Now multiply both sides by e = . Recall however that since we are dealing
with operators we must be careful with the order of operation. It must be

preserved.
im0y —;m(0) i1(0) —;1(0)
ihe T e R t—d‘l’ld(:) Z = M EO t|\IfI(t) >
dUr(t iH(0) _ir(0)
N G O
dt
or let
, (0 _im(0)y
HO =" HOe™ (26.2)

Basically the operator H(") recast in the new interaction representation. We
have in summary

ih% = HO' W () > (26.3)

So this expression is the Schrodinger equation in the interaction repre-
sentation. Note that both operator and wavefunction have both been flipped
over.
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Now we simply integrate this expression to get the behavior of the system
after the perturbation has been turned on.

d|‘If[(t) > 1 1y
A7 70— —HO 1wt
dt Rt >
dU(t) > 1 a ,
ST = H ) |\ dt
[ & | HO ) >
1 ,
|Ur(t) > —|¥r(to) > = T H MWt > dt
U r(t) >= |Ur(to) >+ [i HO'[0y(t') > dt’ (26.4)

So you can see that this is our wavefunction with both zeroth and 1st order
corrections as desired through the interaction representation. Now from this
we develop our solution |¥(t) > in powers of H")' by repetitive iteration.
Basically take |U;(t) >= |¥;(to) > + f;; dt' HO'|U;(¢') > and feed it into
itself (like a dog chasing its tail).

]. ‘t / I !
|W1(t) >=|s(to) >+ t dt HO' |, (¢ >
0

Iteration 1

1 R LY ;
Ur(t) > = \\I!I(to)>+ﬁ dtH [|‘I’I(t0)>+—h dtH(1)\IfI(t)>]

to

t
/ dt H'(t) / dt" B ()| () >
to to

1 1
‘\Ilj(to) >+E dtH ‘\IJI( ( h)

Ur(t) >= |Us(to) > +75 [ dt HO'|W(to) > +p i dt [ dt"  HO (&) HO' (") Wt >
(26.5)

This is the wavefunction corrected to 2nd order.
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Iteration 2

Like in the previous case, take the expresion |U;(t) >= U (tg) > +- ff'; dt HO' [T, (¢) >
and replace it into the back part of the 2nd order expression above.

Y LY
Vi) > = [|Vrlto) >+ dt HV' | Uy (to) >

to
1 t 7 t, " ('I)/ (‘I)II
+ —/ dt/ dt H\' H
@) Jiy  Ju

R LY
i) > = [Vi(to) >+ dt HV'|T;(t) >

Jio

1"

1 t "r ! nr "
Wr(to) > +— ) at HO' ()| wr (") >
Lo

]_ t ! t, " ! ’ ! "
o /t dt /t dt" HOY (£ YHO (8)| 05 (t0) >

1
(in)?

' / /!
/ dt/ / dt”HU ),(t,)HU )/(t//) dt///H(1 ) (t”,)‘\IJI (t///) >
1o Jig Jto

Y LY
i) > = [Vi(to) >+ dt HV' [T (tg) >

Jio

t i
1 / dt / dt" HOY (£ YHO ()| W1 (t0) >
to to

(ih)?

1 t ! t, 14 tl’ " ! ! ! 1" ! " "
-ns/ dt/ it / dt" HO' (Y HO (¢ Y HO ()0 (") >
(Z ) to to to

(26.6)

This is the wavefunction corrected to 3rd order.
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Continue in the same manner to get higher order corrections. For the 4th

order correction:

1
‘\Ijj(t) >= ‘\IJ[(LL()) > +E dt H ‘\If[(to) >

]_ t ! t, 1 ! ! ! 11
P dt/ at" HO' (Y HO ()05 (k) >
(Zh) to to

¢ ¢ i
+ ']_ 3 dt// dt// / dt”/H(1 )/(t/)H(1 )/(t//)H(1 )/(t/”) .
(Zh) to to 1o

]_ t/” 1"t ’ nir
Ui(to) > += [ dt Bt

Jio

i

) >

1
‘\I;[(t) >= ‘\I;[(to) > +E dt H ‘\If[(to) >

A

t ¢
+ dt' [ dat HO' Y HD )0 (t) >
Jitg Jitg
t ’ " t” " ’ ’ ’ " ’ "
+ dt' | dt dt" HO O YHO Y HOD ()| W (t) >
0
t ’ " t” " ’ ’ ’ " ’ " t”l "t / i e
+ dt' | dt dt" HO' ¢ Y HO " YHO () dt" HO' ") e ") >
0 Jio
1 t
|‘If[(t) > = ‘\If‘r(to) > —|——h dt H ‘\If‘r(to) >
" (15)2/ at / at” HY' (¢ ) HY ()| Wr(to) >
N 1 / dt, / dt// / dt/uH(1 )/(t/)H(1)/(t//)HU)/(t/N)“III(tO) >
(zh) to fo fo
+ 4 / dt / dt / dt / dt/IIIH -I)I I) ( )I(tII)H(‘I)I( I”)H( I( ””)‘WI( ////) >
(lh) to to to to
(26.7)

This is the wavefunction corrected to 4th order.
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Summary

You can go on forever in this fashion to get even higher order solutions. Note
that the form of the expression is basically what we derived earlier where we
split e#nt after the fact and changed H(Y — H()' except we didn’t derive
this in an ad hoc fashion.

|\I’[(t0) >
(26.8)
U(to) > +5 [ d HO'[W(tg) >
(26.9)
Wr(to) >+ fy d HO (Wi(to) >+ [y, dt' [y, dt"HO' () HO' (¢")| W (t0) >

(26.10)

These are the zeroth, first and second order corrections
1 t ! !
Ui(t)) > = [Vi(to) >+ [ d HY' W (tg) >
Jig
1 t ’ t, 1" / / / "
+ —2/ dt / dt HO' (Y HO ()0, (k) >
(Zh) to to

‘ ¢ ¢
+ L/ dt// dt”/ dtWHU)/(t/)HU)/(t”)HU)/(t”/)|\IJ[(t0) >
(ih)3 Jy, to to
(26.11)
This is the solution up to third order in correction.
Now we can find the time dependent coefficients C(¢) as well as P(t), the
transition probability in the usual manner. Multiply and integrate both sides
of the previous wavefunctions by < k| for example (which is basically the

t = 0 Schrodinger or Interaction wavefunction and is one of the unperturbed
basis set).

{
cl) = <k|,i/ dt' HOV | W (tg) >
¢ ih J,

0

This is our zeroth order solution.
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Next

i
= <k:|%/ @t HO' (8|1 (t0) >
t

0

1/t r
= — [ dt <kHY )T (t) >
’Lh to

This is our first order solution. And so forth...
Probabilities are determined in the usual fashion

P, = |Gy
dP,
R =

Finally, to define the operator in the interaction representation simply
note that the expectation values will have the same form as in either the
Schrodinger or Heisenber representations. Therefore for a generic operator

A

<A> = <P AT, >
im0y _ir(9)¢
= <\I;[‘€ h Ase h ‘\I;[>
= < \I;[|A[|\If] >

So

im0y _ig0),
AI=e h ASe 2

and where we utilized the definition

1H

(0)
U >=e" 7 |, >

—ir )

)
Wy >=e~ 7 |Ur >
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Chapter 27

Two level system revisited

Two level systems revisited

Before we go on with the interaction representation formalism and time
dependent perturbation theory let’s revisit our favorite 2-level system in
the interaction representation and solve it without invoking time dependent
perturbation theory.

We should get the same solution as in the Schrédinger representation.

Call the initial state n and the final state & like usual.

Consider a harmonic perturbation

HY () = 7 - € = —pegsinwt (27.1)

(Schrédinger representation)
where we will take the z component as usual.

HO(t) = —p e sinwt (27.2)

(Schrodinger representation)
Furthermore recall that in the interaction representation
1Hqgt 1Hqpt
HO@#) =en HD()e 7 (27.3)
Finally recall that the wavefunction in either the Schroédinger or inter-
action representation can be expressed as a linear combination of n and k&
with time dependent coefficients. Since we are working in the interaction

representation we will express [1(t)) as a sum of |¢,,); and |¢); with time
dependent coefficients C,,(t) and Cy(t)
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%(t))1 = Cn(t)[ton)1 + Cr(t)[¥r)1 (27.4)

but |¢n>[ = ‘¢n>5’ at t =0 and |¢n>[ = |¢n>5’

The ”1” is to explicitly remind you that we are in the interaction repre-
sentation. We are not in the Schriodinger representation. Furthermore recall
that

iHgt

[%(t))r =e 7 |(t))s (27.5)

so be careful.
Finally our Schrédinger equation in the interaction representation is

dlyr(t
mw = HOly(2)) (27.6)
Now that we have all of that squared away let’s go and evaluate our
system of coupled differential equations just like in the Schrodinger repre-
sentation case. First our expression for %p.

Project (k| onto our interaction picture Schrédinger equation

o [in ] — g [

Let C,(t) = C,, and Ci(t) = Cy.

d{k|r(t))

ih—=——= = (K[H'|[Culn) + Cy[k)]
d
dC

where now recall
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dC, gt il
MEZE = ke HO e ) + Culhle P HO (e k)
JC O, . (0) (), L0,
ATt = e HEO Blm)e  + G HO Ry
dC (O_ O,
ZE = e T (O 0) ) + Oy O (2) )
Use wg,, = (e )h to convert this expression to
, dCy, iwpnt (1) (1)
zhﬁ = Cpe™ " (k| H'" (t)|n) + Cp(k|H' (t)|k)
Now express H(") = — 1 €gsinwt
d .
ih% = Cpe™' k| — pyegsinwt|n) + Cy (k| — p.€0 sin wit|k)
. de . iwk t
zhw = —epsinwt [Cre™* " (k|p.|n) + C (k|p. k)]

in9Ce = e [Ce st (| us|n) + Cr (Kl ez )] (%) (27.8)

This is the desired expression for C}.

Now repeat the entire process to get an equivalent expression for C,.
Project |n > onto our interaction picture Schrodinger equation
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o [0

i (1)
ih el (1)

d
i (n] [Colm) + CulR)

ih [Co(nfn) + Chlnlk)

dat
ac,,
h_
dat
dac,
h_
T

dac,
h_
Rn

L dCy
(2

dt
dC,
ih—

ac,
h_
Rn

; dc,
dt

resulting in

(nl |H

(n|H'V| [Culn) + Cilk)]

D (t))|

Co{nl H'ln) + Ci(nl H'O k)

Cu(n|H'V|n) + Oy (n|H'V k)

C,, (n|H'M|n) + Cy (n| H'M k)

Cr (n|H'M|n) + Cy(n| H'M k)

ZHot

Cn(nle
L),

Cne 7+ (n|HV|n)e~

H<1>(t)e—”i°t In
(0)

(0)

1| €p

Cu{nlH"

Co (n|HO|n) + Cre ™t (n| HM |n)

Cy(n| — p,€osinwt|n) + Cre™rn (n| —

—e€psinwt [

) +Ck(n\e 7

(0)

—€

)+ Che™ 7

L t ie,gbo)t
+ Cre 7 (n|HD |n)e™

t

Zh% = —€ [qu<n|uz|n> + Cre™ iWhnt <n|ﬂ |7’L>] (ewt%

?

7iwt)

This is the desired expression for C,,.

Now summarize the two coupled differential equations

= —¢o [Cn(n|ps|n) + Cre ™! (n| . |k)] (%

—iu}f,)

ihiCk — ey [Cewnt (k| o |n) + Cr (k|- k)] (“’2—

2

—zmt)

CHAPTER 27. TWO LEVEL SYSTEM REVISITED

Hot

(1)()

i€y '

(n|HOln)

€ Sin wt|n)

Cr{nlp=|n) + Cre™ ™! (np.|n)]

(27.9)

(27.10)

(27.11)

k)
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Now we need some more simplification:

h% = 2 [ n<nmz‘n> ( iwt efiwt) + Ckeiiwk"t<n|ﬂz|k> (eiwt - efiwt)]
’Lhdd—ct’k = [C elwkn k|uz|n> ( iwt e—iwt) + Ck <k‘/.tz‘k> (eiwt o e—iwfﬂ
dc, | o o
Zh? - Z(; { n"uz‘n e — e_m)t) + Ck<n‘ﬂz‘k> (61'( k)t _ e (w+ hn)f)}
dc’ Wl —t(w—wp i Ciw
zh—k = ;(; { (klu,|n) ( i(wtwpn)t =il ;m)t) + G | | (e Lo, t)}

Now certain coefficients of C,,(t) and Cy,(t) are proportional to e« —<kn)t

so they oscillate slowly in time when w = wy,,. The other coefficients pro-
portional to either e’ or eFi(«twin)t ogcillate more rapidly. The secular
approximation or AKA rotating wave approximation consists of neglecting
the rapidly oscillating terms. Alternatively, a parity argument can be in-
voked where < n|p,|n >~ 0 and < k|u.|k >~ 0.

The remaining terms are called secular terms and dominate contribu-
tions to C,, or C}.

. an _ €0 i(w—wpn )t
g T u [C’“<"|“Z|k>e }
. de o €0 —i(w—wpn )t
ih pralli +2i [Cn<n|uz|k>e }
or
dCy _ € i(w—wpp )t
1 = 2 Culnlps| k)
dC]C _ €0 —i(w—wpn )t
k= %{ (K| pzln)e }

Now if you are ezxactly at resonance w = wy,

dc,

dt = %Ck<n‘ﬂz‘k>
de _ 60
- = “op Cr (k| pz[n)

Now differentiate the first expression and substitute the result into the
second
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dQCn €0 de
Srn _ 0 k) =k
at o e k) =
o, 2h &G,
dt eo(n|u.|k) dt?
2h d’c,, €0

o) a2 = anCr ikl
dQCn E% 2
— = ——5 (K z Cn
-

Now we apply the boundary conditions of the problem. The system
initially starts in the state n:

C,(0) =1
Cr(0) = 0
The solution to our second order differential equation which satisfies the
initial boundary conditions is

C,u(t) = cos (W) (27.12)
From which we get
B, = |C(8)]? = cos? (W) (27.13)

To find the counterpart values for Cjy(t) and Py use the above C,(t)
expression in

dOp(t) €0
dCy(t) e eo(k|pz|n)t
a _2h<k“zn>cos( on
Integrate:
Cu(t) = —sin (W) (27.14)

and from this

P, = sin? (W} (27.15)
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Summary

P, = cos? (760““'2’;‘"”) (27.16)

Py = sin? (%) (27.17)

These are exactly identical to the solutions found previously in the

Schrédinger representation.
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Chapter 28

1st order transitions,
Interaction representation

Now that we have re-expressed everything in the interaction representation,
let’s find the transition probability to a final state (say k) after the time
dependent perturbation has been turned on. (We did this before through the
Schrodinger representation-we’ll do it again here) The bottom line however,
is the final results should not be different.

Recall from before that the state function in the interaction representa-
tion was

¢
|T(t) >=|T(to) > 41 dt HV' | W(ty) >
ih Jy,
to first order. Recall also that |U;(tg) >= |Us(tg) > so we will drop the I
and S subscripts for notational convenience.
Now to find out the time dependent coefficient Cy(t) we project < Wy
or < k| onto the perturbed state function.

Cio(t) =< k|T(t) > (28.1)

from which we can get the transition probability through
Py = [Cy(t)?

Let’s get started

1 [, ,
Ciu(t) =< k|[U(to) > += dt' HV'|W(tg) >]

J1p
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For convenience call the initial state n.

T(ty) >= |n >

Ch (t)

L[ty
< k| [n >+ | dt H |p, >}
2

Jtg

Tt ,
= <kin>+= [ dt <klHY|n>
th Jy,

1/t ,
= 5,m+,—/ dt' < k|HV |n >
ih J;

Q

Cr(t) = 7 [1 dt' < k[HV'|n > (28.2)

This is our expression for the time dependent coefficient in the interaction
representation.

Now we could just stop here but we should also recall that since we
are in the interaction representation H Uy(t) is hiding some extra piece of
information. Recall that

m(0) _m(0)y
Hh tH(1) P; t

HV =¢ e

Replace this back into the above expression.

1 ot ’ i (O)I —3 (0)/
Ck(t):%/ dt' < kle"F HMe™ 5 |n >
7 to

Furthermore we know from before that

—izr (0 —iept
ek |n>=eh |n>

therefore

1 t, “I(c())t, 71',9(,10)75/
Cr(t)=— [ dte 7 <klHV|n >e
ih [y,

(note that the prime is gone over the H term inside the bra-ket).

1 t , 11(620)76510) f,/
Crt)== [ dte 7 — <kHn>
ih to
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where we let wy,, = @

Cr(t) = & f dt' et < K[ HM|n > (28.3)

This is our desired time dependent coefficient. Note that it should be iden-
tical to the expression we derived within the Schrodinger representation.
Now if we want the general expression for the transition probability we

apply

P, = [Cy(t)?

P, = };_2‘ [;; eviwknf/ < k‘H(U‘?’L > |2 (28.4)

This is the general expression for the transition probability to first order.

Now we will run through some more specific problems. Derive the tran-
sition probabilities of the following problems. We will let g = 0 for conve-
nience.

e H(") —constant, time independent
e HM"  sinwt this one is new

e HM"  coswt we did this one before

Example 1, HY constant

1 2

Pk — ?
| < k|HO|n > 2|
- =
| < k,‘|H(1)‘Tl > |2 eiwknt _ eiwknto 2
h2 iwkn
let tg = 0 for simplicity
| < k[HD|n > |2 | et — 1
FLQ iwkn

t ,
/ dt' et < k|HV|n >
t

0

, 2
dt/ eiwknt

to

2
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Do the last term separately

iWpnt

ewrnl _ 1 e 2 ( it 7iu)k,nt)
- = ; e 2 —e 2
Win, Win,

. TW b —twWi,,.
oeiwknt (=K _ o= "
Whn 2

ekt (et
= Sin
Wien, 2

Now square this

; 2
2etrnt  pnt 4 | Swppt
s = ——sin 5
wkn

Wkn, 2

Putting it all together we get

kHM 2/ 4 nt
Pk = ‘ < ‘ 5 |n =~ ‘ 5 SinZ—Wk
h Win 2
Sin2""knt
P, = 4|<k\11;;21>|n>\2 < = 2 ) (28.5)

Example 2, HY « sinwt

Consider a harmonic perturbation. We will express H(")(¢) much like we
did for light just so our final expressions can be compared to our previous
results.

HM = — - €gsinwt
Take the z component for convenience.

HM = — U €psinwt
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The transition probability is

1]t ?
P, = — / dt et < E|[H|n >
h
1 t a ! ’ 2
= = / dt e“rnl < k| — pegsinwt |n >
R e,
Lty , 2
= 13 / dt e“wrnt (—eg)sinwt < k|u.|n >
to
2
— 6(2)‘ < k|l’l/z|n > ‘2 /t dt,eiWk"t,Sinwt,
h? 0
- 6(2)‘ < k|p.|n > ‘2 /t dt e“ﬂ-’knf/( et )
12 1o 2i
. 2
B 6(2)\ < klpzln > /teiw,mt (eiwf - —iwt)
- 2
4k to
2
_ 6(2)‘ < k|ﬂz|n > ‘2 /t ei(wkn+w)t/ o ei(w;mfw)t/
4h? to

Ok at this point for convenience let’s consider the last term separately and
evaluate it.

(ei(wkn—l—w)t - ei(wkn—&-w)to )

L I I
/ dt,ei(wkrb+w)t — ei(wknfw)t — -
Jig Z(wlcn + w)

(ei(wkn —w)t __ ev',(o.);m —w)tp )

(W, — w)

Let ty = 0 for convenience.

ei(wkn+w)t -1 ei(wkn*w)t -1
T\ ikt w) ]\ (s —w)

Now take the Rotating wave approximation and drop the 1st term.

ei(wknfw)t -1
T (W —w)
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i(wknfu))t
Extract out e™ 2
(Why —w)E — (W —w)t
(Wl —w)t e 2 — e 2
—e 2 -
(Wpn — w)

) (Why —w)t —i(wp, —w)t
Hwpp=—w)t [ o 2 —e 2
= e (Wgn —w) -
2

Wy —w)
T . (wpp, —w)t
sin
(Wi, — w) 2

Now square this term and replace it back into the main expression

CBl<HpneP 4w
4K (Whp, — w)? 2

. . o (wpy,—w)t
P, = | <k|pz|n>|? (sznZkf> (286)

7712 (Wkn _W)Q

Expression for desired transition probability with sinusoidal perturbation.
This should look a little familiar. (same as with cosine perturbation which
we had been assuming all along).

Example 3, HY  coswt

Now consider like usual a harmonic perturbation of the form H(") x coswt.
Let’s express the perturbation more exactly.

HO = —l - €= —u - €gcoswt
Take the z component for simplicity like usual.

HO = — U €gcoswt



Evaluate the transition probability now.

L]t 2
P, = —/dte”’“”t < klHV|n >
t

0

2

LY st
= = /dt,e“”“”t < k| — poegcoswt |n >
Jtg

2

¢ , ,
= — / dt' et (—eg)coswt’ < k|, |n >
t

0
. , tl X tl 2
iw —iw
/ di ot (€ T
Jto 2

2

€3l < klp.ln > |?
h2

€] < klp.ln > |?
4h?

t ! !
/ dt’ei(wkn—l—w)t + ei(wkn—w)t
to

Let’s consider the last term separately for convenience.

(ei(wkn—l—w)t o ei(wkn—l—w)to) ei(wkn—w)t o ei(wkn—w)to
- + -
(W + w) i(Why, — W)

Let tg = 0 for convenience

(ei(wkn+w)t . 1) (ei(wknfw)t . 1)

i(Whn + w) (W — w)
Now take the Rotating wave approximation and drop the 1st term.
(om=) 1)
- i(Wyn — w)

Wy —w)t
Now extract out e™ 2 to get

(Why —w)E H(Why —w)t —i(Why —w)t
e 2 e 2 — e 2
T (W — w) ( i )

Hwpp—w)t ei(wkn_w)t — e_i(wkn_w)t
= 26 (Wpn —w) (

21
Wy, —w)t w — W)t
= 2e @kn=v) sin—( b )
2
Now square the term and replace back into our original expression.

2 W —wi
2

_ &g < Klps|n > |? 4sin
4h2 (w;m — w)2

P,

225



226CHAPTER 28. 1ST ORDER TRANSITIONS, INTERACTION REPRESENTATION

2 2 gin2 Wkn—w)t
Pk _ gl <k|pz 0> sin o

h? (wkn 7“")2

(28.7)

Desired expression for transition probability with a harmonic (cosine) per-
turbation. It is identical to our previous transition probability derived using
a harmonic (sine) perturbation. Makes no difference.

Summary
A<kl HD|p>2 [ sin? wknt
Pk,constant = <k 72 n>| < w]% 2 (28.8)
2| <k|pz|n>|2 sv’m,QW
Pk,harmonic, sin — 72 (wrm—w)?2 (289)
Bl<klzn>[2 [ sin? Lhn )t
Pk,harmonic, cos — 12 (@ —w)2 (2810)
Extension

However, these expressions can be re-expressed in the limit where ¢ — oo (as
some authors do by invoking an alternative definition of the Delta function.
This is because as t increases the peak in the above expressions becomes
narrower and taller approaching a Delta function at infinitely long times.)

§(a) = limy 400 oler) (28.11)

HMeconstant

So looking above t — oo and = — “’%

. 21w
Wkn\ . sin? “gn
5(—2 )—llmt%ooiﬂt(g 72

| < KHO|n > > [ sin®24t
Pka(l)constant - h2 Wt(%y it

Wi — Wn

M 2
7| < k|H \n>|5( . )t

h2




Convert the §(wy, — wy,) term to d(e;, — €,). Note that

5 (%) = 216 (e), — )

We get

Pk*H(l)constant = 2%‘ < k‘H(1)|n > ‘25(€k - €n)t

227

(28.12)

This is the ¢ — oo expression for the transition probability for constant

H.
The rate is

R=1%s = 25| < (| HD|n > 25(e), — €n)

(28.13)

This is the desired transition rate in the ¢ — oo limit (the long time limit).
It is also sometimes referred to as Fermi’s Golden rule by some people.

H®) harmonic (sine or cosine)

Looking above as a — t and x — w we get

s 2 (p Whn —W
Whp — W ) sin® (t2ha==)
(——) =limpyoo———
2 2 s 2((4)]“"7;0)25
P €5 < kluz|n > | sin® 55—t
k—h, ; = ’
armonic A2 ot ((wsz.u)>
2
€ 2¢/ Wkn — W
= —| <k, o(———)1t
Z0) < el > P2
where
§(Lhn — 2y (T T Oy ok (ey — € — )
2 2
O(En—=) = 20d (e, — €, — €)
leaving
e (2R
Py harmonic = 0(2 )| < k‘/lzz"n > |25(€k — €p — G)t
4h
2

h

2
= = (%) | < k|us|n > 20(e, — €, — €)t

(28.14)
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or finally

2
TEY

Py harmonic = 52| < kluz|n > 125(ex — €n — €) (28.15)

This is the desired transition probability in the ¢ — oo limit for a harmonic
perturbation.
The rate is

—dPy _ T3 g 25(e; — €, —
R=T =g <klpz|n>["(e — € —€) (28.16)

This is the desired rate in the ¢ — oo limit for a harmonic perturbation.
(Also called Fermi’s Golden rule by some.) Alternatively one can write

o [ €2

R - <ZO> | < klps|n > |?6(ex — €n — €)



Chapter 29

Adiabatic perturbations

Now implicit to our previous derivations for either constant time-independent
or harmonic perturbations was the assumption that the perturbation was
turned on sharply at t =ty or t = 0 if you will.

In many cases, the potential actually turns on more slowly.

So what happens to our derived expressions if the perturbation is turned
on slowly. Do they change?

Constant time-independent perturbation, adiabatic
approximation

Assume
HM (t) = et

Note that H(") is our time independent perturbation from before where
n > 0 and n — 0 slowly. We calculate the transition probability using this
slow turn on representation.

2

t )
P, = — /dt’eiw'mt < K HO(t)|n >
J

_ 1/
w1y
1 t ’ o ! !
= = / dt ernt et < k|H |n >
R\ Jt
| < k|HD|n > |2
h2

o

2

-+~

dt e“rnt < ke HO|n >

o

2

2

ot ,
/ dt/e(i’wkn"'n)t

to
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Evaluate the integral separately for convenience and for sake of simplicity
let t9 — —o0. In this limit the contribution of €7 is very small and can be

ignored.
(e(iWkn+Yl)t _ eiwkn-i—’rl)to
(iwkn + 77)
e(iwkn"'n)f’
N (iwkn + 77)

Now square the term and replace it back within our original expression.

Pk — ‘<k‘H(12)|'”>‘2 ( e2nt > (291)

I3 w%n—i—nQ

This is the desired transition probability.
Now for the rate

dP;, | < k[HD|n > |2 (2ne2M)

R = = 3 3 2
dt I3 (wg,, + %)

| <kHOn>2 2pet
- n’ (Wi +1%)

Let n — 0 (arbitarily slow turn on)

| <kHOn> 12 2p

R
h? (Wi, +7?)

2nt

since e“"* — 1 very fast.

2| < kHD|n > |2 n

R
h? (Wi, +n%)

Now note that another expression for the Delta function goes as (who knew
there were so many definitions)

5(x) = lim o™ (m) (29.2)

So by comparison with our expression n — € and & — Wy,

n

———— = 78wy,
- ok
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We now have

2| < k[HO|n > \27T5

R .,

(wkn)

where 6(wg,,) = d(wr, — wy,) and d(e; — €,) = 5(“”“—7;“)”) since by definition of
the delta function §(cz) = 15(2)

2
R= ?| < kl[HOD|n > *hé(e — €,)

Our desired transition rate in the adiabatic limit for a time independent
perturbation is therefore

2 < B HO|n > 25(ej — €n) (29.3)

You can see that this expression is identical to that derived earlier. So
the expression is insensitive to how fast the perturbation was turned on.
(Fermi’s Golden rule does not change)

Time-independent harmonic perturbation, adiabatic
approximation

Ok, let’s do the harmonic perturbation counterpart in the adiabatic (slow
turn on) limit. Do we expect the final expression to change?

Assume H(D(t) = e (—p - €)
HM(t) = —e" i egcoswt

where we took the z component for simplicity like usual.

HM = ey egcoswt (29.4)

Gradually turn on the perturbation through n and eventually let n — 0
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at the end of the problem. The transition probability we want is

2

t ,
P, = —2/dt’ewknt < klHV|n >
n2 |/,

2

]_ t i 1 o
= — / dt ernt < k| — e pegcoswt |n >
Jto

2

t 1o ! ! ’
= / dt ekt e coswt € < klp,|n >
to

2

— 6(2)| < k|/”’2|n > ‘2 /t dt,e(iwk”Jrn)t,COSQ)t,
Jtg

Lo o2
6(2)| < k|ﬂz|n > ‘2 /t dt/e(iwkn_'_n)t’ elwt -+ eil""t
t

2

0
2

2 2 t
_ €O| < k|:uz|n > ‘ / dt’e(iwkn+77+iw)f/ + e(iwkn+n—iw)t,
t

0

2

ot / ’
/ dt/e[i(wkn-l—w){—n]t + e[i(wkn—w)—l—n]t
i

0

Consider the integral separately for convenience.

(e[i(wzm +w)+nlt e[i(wkn+w)+n]to)

(e[i(wkn —w)tnlt _ oli(win—w) +77]?50)

[#(Wkn +w) + 7]

" i — @)+ 11

Like usual invoke the Rotating Wave approximation and keep only the term
strongest near resonance (drop the 1st term) leaving

(e[i(wkn —w)+nlt _ oli(win—w) +77]?50)

[i(wWkn — w) + 7]

Now like before let tg — —o0 and note that ¢’ has negligible contribution
here so that this term approaches zero and can be dropped.

e[i’("-’kn_“’)"'n]t

~

[i(wWkn — w) + 7]

Now take the square of this term and replace it back into our original
expression.

e2nt
[(wrn—w)?+77]

_ co|<klps|n>]
Py = 4

(29.5)




Desired expression for the transition probablity.
Now find the rate R = d—(f}

€| < klpn > 2

4K? [(Whn — w)2 + 7?]
e < k|p|n > |? ne?n

2h? [(Wrn — w)? + ]

R =

Now like before let n — 0

€| < klpsln > |? U
R= 2 2 1 2
2h [(Wrn — w)? + 7]
because €1 — 0 quickly as y — 0.
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Now recognize like before that the delta function is defined in many ways

and that

1 €
— lim, o (————
O(z) =lim _>07T($2+62

)

so by comparison € — 1 and x — (W, — w).

. n
l = 76 (Whn —
0 )

eom| < k|p.n > |?
2R

R = O(wrn — w)

Now convert §(wg, — w) = §(wg — wy, — w) — d(ex, — €, — €) where
O(wy, —wy, —w) =ho(e — €, — €)

since by definition §(cz) = 15(x).
The rate is therefore

2 2
<k n>
R = —WF'O' 2‘;{;2'” | 5(6k — €np — 6)

(29.6)

This is our desired transition rate in the adiabatic limit for a harmonic
perturbation. Note again that it is exactly identical to our previously derived
expression. So it is insensitive to how fast the perturbation was turned on.
Also this is referred to as Fermi’s Golden rule by some. You can see that it

is again insensitive to how fast or slow the perturbation was turned on.
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Chapter 30

Fermi’s Golden Rule

A lot of the nuts and bolts of we’ve done before. Here we will derive from
the transition probability P the transition rate through R = % and then
consider not necessarily one state but a spread or a distribution of final
states. Then we will call this result, Fermi’s Golden Rule.

Rather than start from scratch and re-derive the trnasition probabilities

we will use our results previously derived for 2 general cases

o H( is constant and independent of time

e H(" is harmonic (sine or cosine)

H®W constant, time independent

Start with the derived transition probability

4 . (1) ' 2 ',2“’1«71,7"
P, = UK Jin> P o (30.1)

h “kn

Note that wy, = (wx — w,) where k is the final state and n is the initial
state.

Now assume a spread of final states k& where the density of final states is
p(ex) or p(wr).

To accurately consider the contribution from each state k in the distri-
bution we must integrate the above P, over the spread of final states to get
Plc,group-

As an aside, the number of states with €, or w;, between ¢, and ¢, + dey,
or wy, and dwy, is p(ex)dex, or p(wy)dwy,. We have

P group = [ g Pi(wi, t)p(wr)dwy, (30.2)

235
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© 4| < k[HD|n > |2 [ sin?2pt
Pk,group =

2 2 )p(wk)dwlc

J —00 h2 wk'n,
4 < k| HOp > |2 /°° sin?<knt
— p(wg)dwy,
h2 —0o0 wl%’n,

h? (W — wn)? Pl )duwy

Now here we generally assume that p(wy,) is constant (or that the distribution
is “uniform”). It can now be removed from the integral. Call it pg

0o . Wi —wn )t
_ 4 <KHDn > \2/) / smﬂkf)dwk

h2 —00 (wk - Wn)z

Now let z = (wy, — wy,) and dx = dwg. Also remember to change the
limits of integration.

4| < E|[HD|n > |2 % sin?Zl
h o X

From definite integral tables

/Oo sin’px p
de = —
0 2

72

Therefore

O L2
/ sin pxdx:wp

2
e T

where p = %

We now have

4| < k[HOn > 2 xt

hQ pO?

orr| < k|HM|n > |2pt
h?

Pk:,group =

Our desired transition probability into a group of final states is

27po| <k|HMD |n>|2¢
P growp = 2ot (30.3)
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Now we can get the desired rate

_ APy _ 2mpo|<k|HD|n>|2
R==k= = (30.4)

Now we could stop here and call this Fermi’s Golden rule but typically people
will express this in terms of €z over wi. So to be consistent, recognize that
po = p(wr) = hp(er) since € = hwy. This can be seen from the equality
[ p(w)dwy, = [ p(ex)dey. However since e, = hwy, we have de, = hidwy, or
that [ p(wy)dwy, = [ hp(eg)dws,. Putting it all together we have p(wy) =
hip(ex).

Folen)] < k[HO|n > 2 (30.5)

You can see that this rate is independent of time and is the quantum me-
chanical expression of a classical rate for some process.

H®) harmonic perturbation (sine or cosine)

HM = — e coswt (30.6)

H" = —p e, sinwt (30.7)

From our previous work we derived

— €3] < klp.|n > |2 sinQ%t

P
b TLQ (wkn - w) 2

where again wy,, = (W — wy,).

Like above, we want to consider the transition probability and more
specifically the rate of transition into a group of final states k& (not just into
one state).

So we integrate over the spread of final states dictated by the density

p(ex) or p(wr,).

Pk,group = f_OOOO Pk (wka t)p(wk)dwk (308)

® eo| < K|pz|n > |? sinQ—w’“"{“’
= Wi )dw
/oo h2 (wkn - w)2p( k) ¥

I o <Hpfn> P sinmgeme
—o0 h? (wk_wn_w)zp S

Pk:,group
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Now as before, assume that p(wy) is constant or rather that the distribution
is uniform. It can be removed from the integral.

dwk

P _eplwp)| < klp.ln > |? /°° sin?k=tn=ty
k,group —

K2 J oo (W — wy, — w)?

Let x = (wg — wy, — w) and dx = dwy. Also remember to change the limits
of integration. We then get

dx

P = egp(wr)| < klps|n > > sin2%
k,group — h2 = xQ

As before, from a table of integrals the definite integral is

oo gin2it 7t
/ 2 dib’ = E

2

—00
The resulting transition probability is then

_ op(wp)| < Klps|n > > mt
group — h2 2

Py

Also like before, rather than stop here, flip p(wy) into p(e) to keep the
notation consistent with other texts (p(wy) = hp(ex)).

rdp(ci)

Py group = =5 < k|p.|n > |t (30.9)

This is the desired form of the transition probability.

. . dp,
Now the desired rate is R = %.

R = gregpler)] < klpsln > |2 (30.10)

Again, the rate is constant with respect to time. It is the quantum mechan-
ical version of a classical rate. This is called Fermi’s Golden Rule.



Chapter 31

Fermi’s First Golden Rule

We claim that if there is no direct coupling between an initial state |n >
and a final state |k > the transition rate from the intial state to the final
state via intermediate states is given by Fermi’s 1st Golden Rule.

Recall that to 2nd order, the corrected wavefunctions (or state vectors)
in the interaction representation is

| ,
Vi) > = [Wito) > +5 | dt HO' [0 (t) >
0
_1 ! ! t/ " r! ’,on
+ (ih)Q/, dt/, dt" HO' (YHO )W) > (31.1)
0 0

where we will call |U(tg) >= |n > (our usual intial state) and |V (tg) >=
|\Ijs (tO) >.

We want the transition probability and transition rate. To get this we
need to first get Cy =< k|U(¢) > from which we obtain P, = |Cj(¢)|? and

also R = 4Lk
dt

1 t ! I 1 t ! t’ " / ! / "
) = <k — [ at'g™ —/ dt / dt HO' " YHD (¢
Cr(t) < k| \n>+ih \n>+(ih)2¢0 S (t) t )n >

Jito

1 f !/ ’ 1 t ! t, 1" ’ ’ ’ "
= <hkln>+— [ dt <kl HD |n > + /dt/ dt" < k[ HO' " YHD (") |n >
i to to

to (ih)2

¢ ¢
/dt’/ dt" < HHY YV HY ¢ )n >
10 to

1t / 1
— M
Ok + ), dt < k|HY" |n > +(z’h)2

Obviously the delta function out front is zero and furthermore recall that
there is no direct coupling between the initial state and the final state so
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< k|HM" |n >= 0. This kills the first term inside the integral leaving

Cr(t) = [rdt’ [ at" <k HO' )H t")|n > (31.2)
Now lest square this term to get Py (t) = |Cr()|?
’ 2
Po=%\[pdt [ dt" < k[HO' E)H ")n > (31.3)

Now to evaluate this we insert the Completeness relation for intermediate
states

Yo m><m|=1 (31.4)

resulting in
2

1 t / 3 1z 104! o
P =— Z/ dt/ dt’” < k[ HO' m >< m|HY " )|n >
h m#n VL0 lo

Now start simplifying this expression by recalling that in the interaction
representation, we are actually hiding some operators

(0 (0

H(-I)/ (t) _ elH;L )t (-I) t ele{h( )t
P, =
1 t ’ 3 " i) 1 ;i)
— dt | dt’ <klemm HO@E)e  » |m>
h4

m#n to to
(@, _im (0" 2

<mle” " HOE e 7 |n>

1 t ’ t, ” i‘io)t, 7 —iegg)t,
= = Ej/dt/ dt e 7 < k[HO () |m > e
) ' to

m#n ¥ "0

) (O)t” . (O)t”

1€,

e <mHME )n >e*

1 t ! t, " i(62~0)_€£2))t/ '
= = Z/ dt/ dt' e 7 <klHV{E)|m >
m#n to to

i Oy

e <mHY ) n >




241

Let’s switch to wy, and w,, notation to speed things up. From this we know

©)_ _(0) ©) (0)
that wy,, = = hem and w,,, = Sa—n_
, 2
1 't ’ 't "o ! / . " "
P=2 Z/ dt / dt' et < B HOE ) m > e#mt’ < mHOE n >
R t t
m#n* 0 0
! . . " 2
Po= 0 (S [t [l dt"@mmt eomnt’ < B[ HO( ) m >< mHO " )|n >
(31.5)
This is our desired transition probability in 2nd order.
Now at this point you choose your favorite H(")(t) perturbation and
evaluate. Here H(")(t) can be time independent like before or harmonic and
time dependent.
Example, H" time independent
As a specific example, let’s assume
HM @) = HOent
where H(") is time independent (constant) and 7 is our adiabatic slow turn
on switch.
/ 2
1 ¢ 7 t 7 o, " ! "
P = = Z/ dt/ dt” e’ rmt gwmnt < LI HD e |m >< m|HDe |n >
h m#n to to
, 2
1 t , t "o o " ’ "
= = Z/ dt / dt" eiwrmt giwmnt gnt gt kI HM |m >< m|HV|n >
R m#En to to
, 2
1 q 1 t ’ t "o Ny "
= — Z < k|HDm >< m/HD|n > / dt / dt" @rm+mt o(iwmn+n)t
h mZ#n Jio Jig

Now evaluate the first integral over ¢

!

1
e(iw'mn+7])t” e(iwm,n‘l"f])t, _ e(iwm,n‘l"f])to

(iwmn + 77) (iw'm,n + 77)

to
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Now like before let tg — —oo and note that €7 — 0 quickly so that the
second term in the numerator is negligible and can be dropped.

e(iwmn+'rl)tl
B (iWmn + 1)

Replace this back into our original expression

;12

| : t ;. ' ,e(iwmn—l—n)f
P = S|> <klHYm><mH |n > / dt elwrmTmt —_________
m#n Jto )]

2

— i Z < k‘H(1)|m >< m|H(1)‘n > /t dt/e(iwknL+n+iwmn+n)tl
(Zwm,n + 77) L

0

m#n
2

1 3 < K HO|m >< m|HVn > /t gt elifwr—on) 420
(Zwm,n, + 77) t

0

m#n
2

1 3 < k|HW|m >< m|HV|n > /t gt eliwrn+2n)t’
(iwmn + 1) .

to

m#n
Now consider the last integral separately for convenience
e(iwkn"!‘Q"'l)t — e(iwkn+2n)t0

(twgn + 21)

Again, let ty) — —oo and note that >0 — 0 quickly, so let the second term
in the numerator contributes very little (drop this term).
2
1 1
1 > < klHDm >< m|H|n > (i t20)t
h4 (iw'm,n + n)(zwkm + 277)

P, =
m#n,

Pull out the terms which do not depend on m.

P 1 | eliwrn+2m)t < k:|H(1)\m > m\H(1)|n S
f il R e—— -
h* | (iwgn + 2n) ol (twmn + 1)
_ et <K HD|m><m|HO |[n> 2
B = ni(w7, +4n2) Zm;ﬁn (mm——m (31.6)
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This is our desired transition probability in w notation.
Alternatively, if you like to express things in terms of € recall that € = Aw

2
P, = et 3 < k|HD|m >< m|HO|n >
PR W, + dn?) = R(iwrn, + 1)
eAnt <k|H(1)\m><m|H(1)‘n> 2
[enn+(20n)?] Zm#n Ciemn 717 (31.7)

This is our alternative expression for the transition probability.

Now let’s move on to Fermi’s 1st Golden rule for expressing the transition
rate in second order.

Consider as before a density of final states p(eg). So as before, we must
integrate over this density of final states. Also as before, consider a uniform
(or constant) distribution.

P group = / Py.p(er,)dey,

2
o0 et < E[HOm >< m|HV|n >
P T OU] , dey,
oo = [ 2T e i
2
< k[HD|m >< m|/HD|n > ant /Oo dey,
= e (e + 1) S N R CT

m#n

Ok now to do the last integral consider the following

/°° dr /°° dx
Jowo @+ 2% | o a?(1+(£)?)
Let y = 2, dy = %da: or dr = ady and note that the limits of integration

stay the same
/°° ady B /°° dy
o (1492 e a(l+y?)

_ l/oo dy
a) o (1+3?)
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cO;%da and also remember to change the limits

of integration y = oo, — § and y = —o00,a — —5. We get

Now let y = tana or dy =

1 do

cos?a(1 + tan’a)
do
2

cos?a + sinl«

Q|
M
|=\ ol

SRR

I
2le
I

SER

[
U
S

Sl ™

3

e

Q3| 2l
§

where a = (2hn). We get

/°° dey, .7
—oo [€3, + (21M)2] 21
Therefore

— 4nt
P group = p(er)e™™ 37

2
<k|HD|m><m|HD |n>
Zm#n (€mn+Hhn) (318)

This is our desired transition probability in second order into a group of
final states.
Now we can get the transition rate in the usual way.

AP orou
R — ,group
dt
2
_ P(Ek)47764nt7r Z < k‘H(1)|m >< m|H(1)|n >
= 20 i (t€mm + Fin)
M M ?
27 < klHMDm >< m|HM|n >
= " p(e1) Z | (| - | |
men L€mn T 77)
Now let n — 0 like usual
- k| HO) [m><m|HD > |2
R= %p(ek) ‘Z'm,#n = (7‘Fm>nj—777|7) [n> (319)

This is our desired transition rate in second order. This is also Fermi's 1st
Golden Rule for the rate of a 2 step process.



Chapter 32

Line Broadening (lifetime
broadening)

In the interaction representation we have the wavefunction to 1st order

1ty
Ti(t) >=s(to) >+ [ dt HY ()| (to) >

Jig

i (04 —i(0)y

where again recall the prime over H(") means that H"'(¢) = e" 7~ H(") (t)e ™ n
and also that |Uy(tg) >= |V,(tp) > in the Schrodinger representation.

Now consider populating a final state & where heuristically that state
happens to decay exponentially. Let’s also say that the perturbation is
harmonic H(" o sinwt.

Ok so basically our task is to find Pj and see what the exponential decay
does.

Chp =< k| T, (£) >

_ Tt g/ (1) 1 —
where [U,,(t) >= |n > +3 [ dt' H')'(t)|n > and where H)(t) = —pu -
egsinwt. Take the z component for convenience like usual. H((t) =
—p €gsinwt. Note that this is in the Schrodinger representation.

245



246 CHAPTER 32. LINE BROADENING (LIFETIME BROADENING)

Ok, here we go

1 t ’ 4
Cr = <Kk {In >+— [ dt HV'(t)|n >}
ih Jy,
]. L / 7
= <kln>+— [ dt <kl[H" (@t)n>
ik Jy,
1 [t im0’ _in(©),/
= Gt = / dt < ke " HO(t)e " |n >
ih Jy,

R i)

= — [ dte m <kHD®)|n>e h
ih Jy,
AR G R

= — [ dat'e 7 <kHY®)n>
lh to

where wy, = 452
1 t ar !
Cp = —= [ dt et <k HO(@¢)n >
ih Jy,
t ! : ! 4
= — [ dt et < k| — p.epsinwt |n >
ih Ji,

¢
€ o, ! .

= 2 [ dt et sinwt < Elws|n >
ih Jy,

€0 < k|ps[n > /

Lo iwt e—iwf’
dt e*kn
ih to 21
t I4 I4
_ % < klpz|n > / ei@n @)l _ jiwen—w)t
2h Ji
Let’s look ahead and recall that there are 2 terms in the integral. One
dominates near reasonance and we usually drop the other one. (This is our

Rotating Wave approximation). So let’s do it.

t /
C, = <kl > [F o i
2h "

At this point take the derivative of the above expression rather than inte-
grating and evaluating like usual.

dCh, _ _f < k:\,uz\n >e

dt 2h

i (wWhen —w)t
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Now you’ll notice that there are no decays in the above expression. The
e!(@rn =) term just oscillates. So since we expect the final state to eventually
decay at long enough times add such a decay term heuristically to the above
expression.

Since in the long time limit P, = |Cy|> o< e~

=TIt

some rate I') Cy(t) = e2
dCy(t) ' o r

# - 2t = 340

We can add this expression back into our original equation.

I (exponential decay with

dCy e < klp:|n > i

dt 2h

Now the general solution to the 1st order differential equation of the form

T
Wn—w)t —C
9 k

Yy +ay = be'
1s
beiat

y=Ae 4+ ——
a—+ 1«

So by inspection to our expression
_ (50<k|ﬂz‘n>>

C (t) = Ae_TFt #ei(wkn_w)t

g + i(wkn - w)
Rearranging gives

—rt €g < kluyln > ellwrnmwlt
Ci(t) = Ae> — ,
2R (5 +i(wrn — w)]

At long times one can neglect the first term of the expression.

€0 < k|ps|n > eHrn—w)t
2h [5 + i(win — w)]

Ch. (t) ~

Finally Py, = |Cy(t)[2

P, = G<bliin> (( ! ) (32.1)

2
Whn —w)+ FT

This P. then has a Lorentzian lineshape which is broadened by the expo-
nential decay rate T'. (This is referred to as lifetime broadening because
the state’s intrinsic lifetime causes some fatness or natural width to the
lineshape. It is an example of homogeneous broadening.)
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Chapter 33

Irreversible decay, Fourier
transform approach

We want to see how an initially prepared state will decay. Previously we
simply asserted that the decay of a state will go exponentially as oc e,
But here we try to prove this assertion.

We will have a final state (or states) called k and an initial state which
we will call n. Our goal is to derive how n decays and to show that it will
look exponential. Assume a constant time independent perturbation H(".
Also start with the time dependent Schrodinger equation expressed in the
interaction representation. Recall that

ih% = HY' ()| (t) >

where in general |U;(¢) > can be expressed as a linear combination of ¢ = 0
wavefunctions with time dependent coefficients.

Ur(t) >=Y_ Ci(D)|ir >
l

Note at t = 0 |l >;= |l >;. The Schrodinger and interaction wavefunctions
are identical. We will drop the I subscript for notational simplicity.

Now since we have an initial state n, C,, ~ 1 but not necessarily identical
to 1 and Cjx, ~ 0.

‘\Ifj(t) >= Cn|7’L >

ihd(Cn\n >)

— g
o H'Y Cpln >
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Multiply through both sides by < k| to isolate an expression for C.

d ,
ih(Cp <kln>) = Cp< EIHV n >
in e _ C, < k|HM |n >

dt

Now recall that in the interaction representation

O _ O iy =i
where H(") is a constant.
dC I3 (0) —4 (0)
md—tk = C, <kle T H T >
(O)t 7ien(0)t
= Cpe i <k|HVn > e
l(e(o)—eglo))t
= Che™ ® < k|HD|n >
hiCk = Cpeiomnt < k| HD|n > (33.1)
L0)_ (0)
where wy,, = £——
dCy, 1 .
—* = — et < k| HO |n >
at i " H
Integrate to get
1
Cp = 7 dtC (#)e=nt < k| HO|n >
i

Also note that we implicitly assume C}%(0) = 0 which is reasonable.

At this point physically you have a state n feeding state or states k so
here is depletion of the initial n population. But by the same token k can
feed n (called feedback) so we can in principle build back population in n.
However, it will turn out that this feedback is not perfect and that in the
end n basically decays.

d /
ih—U(t) >= HY' @, (t) >
where |W;(t) > is our prepared k state.

‘\Ij_[(t ZCk\k>
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d /
ih— —gm
mdthk\k >=H'Y " Cylk >
k k
Multiply through by < n| to isolate an expression for C,,

—< | HOVI[Sk Calk>]

L d
< n| llhazk:okk >

d ’
. E : M
zh—t Ek Cr <nlk> = d Cr <n|H' |k >

dc, /
ih—r = M
ih pralli Ek Cr <n|H' |k >

Extract our the possible case where k£ = n on the right

d n / !
indCn _ Co <nHWY |n > +> " Cp <n|HV' |k >

dt
k#n

Usually the first term on the right hand side is zero but we keep it to stay
general.

Now here we take our previously derived expression for C} and insert it
into the above equation.

in e _ C,, <n|/H |n >
dt

/ ]. ‘t / ! ; ! /
+ Y <nHYE > [—h/ dt' Gy (t )t < K HD(t)n >
e Jy
k#n 0

Convert all HM" 5 H™ where recall that H(") is constant. We have
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(1)/ zH(O)tHU)e—iHh(O)t‘

, dCy
dt

= C, <n/HVn>

i ()r —i(® 1 t / N ! !

+ Y <nle T HO T T ) > [—h/ dt C,, (t )e'rnt <I<:H(”(t)|n>}

(3 to
k#n

= C,<n/HV|n>

. 1 !
+ Y et <n[HO |k > {—/ dt C, ()=t < K HO(t)|n >}
P ih to

C, < n/HD|n > — 1)
= = h?z it < n|HO|k >

k#n
t
/ dt o (t)e ! < k| HOn >
Jto

w < n|H 1 ;
_ G < n |n>?z|<nH(1)k>|2ewk"t

ih
k#n

/ dtC ( ) zw,mt/
to

" HM 1
_ C, < n |n>?2|<nﬂ(1)k>|2

ih
k#n
4 , )
/ dt C ( ) Went e—v,w,mt
+

0

(M
_ Cn<n’§ |n>—%2|<nH(1)k>|2/ dtC( )“’kn(f_f)
(2

Assume C,,(t) = 0 for t < 0 allowing us to extend tg — —oo. Also consider
long times ¢ — oo

,n, (l),n, G —
%:Wf% Zk;én\<n|H(1)\k>\2ffo dt' Cy(t)e jon (£ —1)

(33.2)

This equation can be solved by using Fourier transforms defined as

t) = [ flw)e ™ dw (33.3)
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with its inverse tranform of

Fw) = &= [, Cult)e"ds (33.4

1 [® ,
= — C,,(t)e™dt
2 /0 ( )e

since Cp,(t <0) =0

Also note that Fourier transforms are written in a number of ways. For
example, some people like to see the forward and reverse Fourier transforms
in a more symmetric fashion.

C(t) = o= [%20 flw)e ™ dw (33.5)
Forward tranform
fw) = 7= [, Calt)e™ duw (33.6)

Accompanying reverse tranform
Alternatively they will write it in terms of linear frequency v rather than

Cu(t) = [, fw)e 2™ dy (33.7)

Forward transform

fv) = [T Ch(t)e?™ dy (33.8)

Accompanying reverse transform

These expressions are all the same thing. However, we will use the first
convention here.

Multiply both sides of our main equation by e** and integrate from t = 0
to t = oo and assume C),(co0) =0

e . dC, 1 e° )
/ e“’tidt = — <n|HYn> / Ce™tdt
0 ih Jo

dt

1 0o o o

—QZ|<nH(1)|k>|2/ ewtdt/ dt' C, (¢ )e' s =)
h k#n 0 0

Let’s do the left hand side first. (Integrate by parts)

e dC, - o° -
/ et gt = Cne“"t‘zo — / Ciwe™dt
0 dt Jo
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Let u = e™!, du = iwe'dt, dv = %dt, v = (C,. Using this we get
= Cnei“’t‘go — tw / C,etdt
= —-1-— iw/ C,e™“'dt
0
Now this second term turns out to be our Fourier transform.
=—-1—iw2rf(w))

The desired left hand side expression is

—1 — 27w f(w) (33.9)

Let’s do the first term on the right hand side now.
1 oo .
— <n/HDn > / Cpe™'dt
ih Jo
Clearly this is our Fourier transform again

1 0
7 < n/HY |n > (27 f(w))

o
:-_§<nmmm>ﬂm

So far we have

271

-1 —2miwf(w) = - <nHDn > fw)
1 f0o ['e) , , ] ,
_ _22| <n‘H(1)‘k> |2/ 6lwtdt/ di Gn(t )ezwkn(t —t)
A k#n 0 0

Consolidate terms in ¢ and t by bringing the term with ¢ our of the second
integral.

—1 —2miwf(w) = f%<n|H(1)|n>f(w)

1 oo . o . /
- 2 | < n\H(U\k > |2/ ewte_“”k”tdt/ dt C, (¢ )e“”’“”t
i Pt 0 0
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For convenience we will swap wg,, — wWpk(Wkn = —Whk)
. 21 (1)
~1-2miwf(w) = f? <n|H"W|n > f(w)
— S <Al HO > 2 / it givnnt gt / dt Ciu (£ )it
h k#£n 0
. 27 (1)
-1 —2miwf(w) = —7 <n|H|n > f(w)
S ’
- Z\ <nlHO[k > / ““’*“’"’“)tdt/ dt C,(t )enst
h P Jo

Now we will fudge things a little bit. To render the integral over t convergent
we will introduce e “ and at the end of the problem let € — 0

o
~1-2miwf(w) = f% <nlHDn > flw)
- 32 Z\ <nHV|k > 2/ Z'(“’J”’”’C)te_atalt/ dt,Cn(t,)e_i”"kf/
R k#n 0

Now we will integrate the 2 back to back integrals. We will integrate them
by parts. We have

o0 oo /
/ ei(w+wnk)tfetdt / dtl Cn, (t,)e*iwnkt

J0 J0

Call the second integral g(t)

/O ei(w—l—wnk)tfetg(t)dt

etwtwpp)t—et
t(wtwnr)—€ *

where u = g(t), du = C),(t)e “nrtdt, dv = e!@“Honk)l=ctdt and v =
Integration by parts then give us

oo ei(w—l—wnk)tfet )
— / —C,(t)e nrlgt
o Hw—+wnk)—

g(t) eilwtwnp)t—et ©°

i(w + wpi )€

The entire first term is zero leaving us with

z(w+.unk Y—et ]
/ / / —C,(t)e Tt
) (w4 wpg) — €
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Assume now that e is small such that e ¢

anyway at the end of the problem.

:/OoeWt W it &#C (t) /mw
0 o i €

(w4 wpk) —

1 o
= —— / 'O, (t)dt
i(w~+ wni) — € Jo

It turns out that the last integral is our Fourier transform again = f(w)(27).
We then get

— 1. We're going to let € — 0

—27 f(w)
Ci(wtwng) €
Now replace this into our main expression for the double integral we

have just solved. The expression becomes

2mi

~1 - 2miwf(w) = 5 < n|HV|n > f(w)
_ %Z‘<n|H(1)‘k>‘2 _M
h i(w+ wyr) — €
k#n
14 2miwf(w) = %<n\y<1>\n>f(w)
1 —27 f(w)
il (M 2 (27
k#n
14 2miwf(w) = %<n\H(1)\n>f(w)
2 27 f(w)
+ nﬂ% <n|HO |k > | (i(ww)ﬂ

Now an important approximation here is to let w = 0 in the denominator.
This is justified if we are not interested in values of C), (¢) shortly after ¢ = 0.

271 1 2
o) = O 0+ b <0 (20
k#n nk
) <n\H(1)|n> 27rzf | < n|HO |k > |2
= 2mif(w) = Z ot D

Consolidate terms with f(w) now

1+ 2mif(w)w

<nHOn> 1 | < n|HMDk > |2
S Sy

h (Wnk + t€) I=0
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Solve for f(w) since we are eventually going to flip back into the time
domain to get C),(¢t)

2mif(w)[—w +

=1

<nHDn> 1 | < n|HDk > |2
SLLULESE S gLl
h I3 = (Wnk + i€)

1
2mif(w) =
<n/HO|n> 1 <n|HM |k>[2
W h + "2 Ek#n (wnrtie)

which simplifies to
)

<n|HM |n> 1 |<n|HM)|k>|2
2m [‘*’ TR TR Lk (wtie)

flw) =

At this point we want to flip back to the time domain through an inverse
Fourier Transform.

From a table of Fourier Transforms (CRC pg 414, Standard Math Tables
and Formulas) we have

—cx+ile 7
e = e (33.10)

provided that ¢ > 0 and = > 0. Note that the CRC defined the Fourier
transforms in a symmetric fashion. We had our 27 consolidated on one
transform. Let’s therefore rewrite the transform in our notation.

i
2n(l+ic + )

e—caz—l—il:r

Also z =t and a = w in our case leaving

e—cttile —s T o =) (33.11)

By comparison to our expression

a = w
- <n|HV|n >
N h
1 M 2
h? i (Wi + t€)
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Therefore we have in the time domain

[ <nHE®ps |<n]HD |>2

1
Py = o [ D U

) (1) 12
il <n|HO >4 Ly, <ol R 2 }t
Ft)y=e ' [ METANI TR 2kt T o tio (33.12)

Now the exponent may be converted into a more manageable form by
applying

limE%oﬁ = p(L1) — ind(w) (33.13)

where p is called the Cauchy Principle part.

1 1

p— = —ifw#0
w w
1 .

p— = 0ifw=0
w

Soase =0

Ynk

i n|HD | e>|2
L <n|H(1)\n>+rl§:k nu]f
I‘(t) ——Cn(t) =€ h{ i #

[ 1 2
<ol HOn>+1 5, ., (M#WKMH(D |k>\25(wnk))} ¢

Ynk

-

Cn(t) = e

T wHO a2
—i <n|H(1)\n>+Zk;én(M—%KH\H(U|k>|25(wnk)>]t

Enk

— i <l HD >+ 32, 4, %]t—ﬁmmmm%(wm)t
= e L fn- €
Note that from non-degenerate perturbation theory the first term in the
exponent is our 1st order correction (') and the second term in the exponent
is our 2nd order correction €?), So let’s just call the stuff in brackets Ae.
Mg > |2
_ ™M) | <n|H'|
Ae = <n|H |">+Z OREO

k#£n €n Gk_

GO )

We now have

—iAet

Co(t) = e~ e el <HOI= P50, 1y
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where d(wpr) = hd(€,1)

Cn(t) — e—i?et e—%‘<n|H(1)‘k>|25(Enk)t (3314)

Now the exponent of the second exponential looks like Fermi’s Golden Rule
(Tisarate I = & | < n|HO|k > [2p(enr)) except its off by 3 from our real
Fermi Golden rule expression. Compensate for this factor to get

C,(t)e” Gt e 2t

or let 2T" = % to get

/
_ iAet I' ¢

Cp(t)y=€e""r e 2

Finally since P,(t) = |C,,(t)|?

P.(t)y=e"t (33.15)

This is the exponential decay of an unstable state. We just proved our intial
assertion that the state will intrinsically decay in an exponential fashion.

Finally! (for real) since we have C,,(t) we can solve for Ci(t) and in turn
get Py(t) which is the transition probability into a final state or group of
final states that the intial state is bleeding into.

Recall that

I N,
Ci(t) = = | dt' Cp(t)ernt < k|HV|n >
0

1 t _idet Tt !

= — [ dt'[e=n ez et < k|HD|n >
ih Jy,
1 t 71AF1§I 7Flt, ielmt,

= — [ dten ez et <klHDn>
ih Jy,

1 [t liteap—t0- Do
= — [ dte 7 <klHVn>
ih to
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recall that H(") is constant so < k/H("|n > can come out of the integral.

<EHOn> [t iem-d0-Lh1
Cu(ty = SMH n> 7 Homt) =
ih Jio

’
li(egn—A0)— 151t
h

h<klHVn> e

ih i(€rn — A€) — 1“’777

to=0
’ t
li(egn—Ae)— L1
h

<klHOn> e

¢ i(€rn — A€) — %

to=0
/
li(egn—ae)— L1
e 7 -1

7[(6kn — Aé) + %]
< k[H|n > e =20~ TRl
- ANED [1—e g ]
[(Ekn - AG) + 2 3 ]

= <klHOn >

We get

Cu(t) = —<HHOIn> g =5t o (enn— B 33.16
k() oAt 0] e 2 el ( )

This is the desired form of the final state time dependent coefficient.
Now for the transition probability.

B, = |Cy(t)?
| < ]{7|H(1)‘7’L > |2 —r's ia —r's —ia
= o7 l—e2 e l—-e 2z e
[(ern — Ae)? + =]
where a = w After some algebra this works out to be
EH 2 / _r’ o — A€t
Py = | <& In ?2"# (1 —e T Ze%cosw>
[(ern, — A€)? + T] h

This is the desired expression for the transition probability of the final state
Now as t — o0

p, = —<kID 0> (33.17)

2752
[(ern—0e)24+1505]
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where €, = (€ — €,) and where I' = Z| < n|HM|k > |2p(e,). This is
back to our Lorentzian lineshape peaked at €, = ¢,, + Ae and with a spectral
width of T'A.
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Chapter 34

Irreversible decay, Redux

We will derive the previous results in a slightly different way. It is much
faster. Start with the time dependent Schrodinger equation expressed in the
interaction representation

dUr(t
sl 0r(t) >

_ g
- HY |0 (t) >

where in general |U;(¢) > can be expressed as a linear combination of ¢ = 0
wavefunctions.

Tr(2) >=Y_ Gl >;

where note that at t =0, |l >;= |l >,.

Now as before we will ultimately want C,,(t) to get P, (t). This will show
the decay of the initial state.

Multiply both sides of the Schrodinger equation by < n|.

d /
ih— < n|¥;(t) >=< n|HO' [W(t) >
Now insert the completeness relation (D, |k >< k| = 1) above

d ,
o - M
Zhdt < n|¥r(t) >= Ek <n|HY |k >< E|Y(t) >

Now separate the £ = n case on the right hand side.

d /
ih— < nlp(t) >=< n|HV|n ><n|Ur(t) >+ <nHW |k >< k[W(t) >
k#n
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Now divide through both sides by < n|U(t) > to consolidate terms

ihd < n|U(t) >
< n|Ur(t) >

< k|Uy(t) >
< n|Ur(t) >
) >

<n[HDn>+Y " <n/HV |k >
k#n
< k|\I/](t

il U (t - HD HO > 2200 7
ihln < n|Ur(t) > < n| \n>+z<n\ | ><n\\111(t)>

k#n
Now at this point the above expression can be simplified by noting 2 things.

e a) Our initial state is basically n. That is, Cn(t) ~ 1 (but not necessar-
ily exactly 1) and the perturbation is small. All other time dependent
coefficients are ~2 0. Therefore < n|WU(t) >~ 1

. t / ’
e b) From this we also see that < k[¥(t) >= — fto dt’ < k| HV (t)|n >
Replacing these two points into the above expression we get
7 I 1 t I I
ihin < n|U;(t) >=<n[HV |n >+ " <n|HV |k > —h/ dt < k|H" |n >
e Jy
k#n "0

Now let’s convert H(W' — H(), Recall that in the interaction representation

O _;m(0)
HO = M HMe ™5 We get
thln < n|Vr(t) >
1Oy oy —ia ()
= <nlem HYe 7 |n>
im0y _ig(0);

<nle n HMNe 7 E> [t iH(0)y —ir(0);

+ Z | 5 | / dt,<k‘e o HNe™ 7 |n >
ih to

k#n
(0),

1€y, 7116,,(,9) t

= e <n|HV|n>e

e ie(o)t

t
e <nHDk>e
> 7

_Tk t / ie%o)t 1 —ieno)t
/dte 7~ < n|HD|k>e 7
¢

0

k#n

i(F%O) —€

(0)
)t 7
2 < H(1) k> 't , i(€(0)f€(n0))t
= <n[HVn >+ 8 ,hn| | / dt' e < k|H|n >
¢ t
k#n ‘0

E%O)_Eéo)

where w,, = T

t !
dt et < k|HD|n >

0

ihln < n|U;(t) >=< n|HO|n > + 3
k#n

il < p| HO |k > /
th ;
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Now here just like we did previously we will assume a time independent
(constant) H("), However, we will add € in front to allow for a slow turn
on. At the end of the problem we can let n — 0

HM = ent g

Also call < n|¥;(t) >= Cy(t) so this notation looks familiar like our
previous expression in the last chapter.

i i ! ’
dt e rkt < kle™ HD|n >
0

ihinC,(t) = <nle"Hn > + Ze
k#n

(fwnk+n)t H(1) k t , ) ,
= " <nHVn >+ Z c <hn| [k > / dt eZienetmt < | HO | >
t t
k#n 0

i) 1 2t p
= " <nHVn>+Y el <,n‘H( Ik > | / dt ettt gy’
kein ih to

it < n\emHm\k >

Let t9 — oo since the integral contributes little to nothing in this region.

1 2 ,
ihinCy, = e" < n|HV|n >+ livarm < n|HOJk > | / dt’ e ~iwne Tt gy’
' ih

k#n Voo

Now integrate the expression

‘ < n|H(1)|k > ‘2 e(fi“)nk‘kn)t, !
ih (—iwnk + 1)

ihlnC, = " <n|HV|n >+ Z elienttnt

k#n _
1 2 —iwng )t
_ ent <n‘H(1)‘n>+Ze(i“’nk+”)t‘ <7’L|H( )|k§> ‘ e(' k+n)
= ih (—twpk +1)
2nt H(1) L 2
— e”f<n\H(1)\n>+Ze | <n k> |

= ih(—iwny + 1)

e < n|HD |k > \2-|

e |_
InC,, = — |em HO + E
nC, el” < nf n > P E— J

th
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Asn— 0 (e" and €?" both die quickly).

1 | <n/HD k> 1
InC, ~ — HO -
nC, = [<nlH " In> +k§n Cier 1) (=)
1 | <n|HO k>
~ HO
= | <nlH|n > +k§£n (er £ i)

Integrate this familiar looking expression to get

. 1) 1.2
i |:<'n,|H(1)"n,>+ Skt L<nHD k> | ]

(epr+inh)

Clt) ~ e (34.1)

Now the exponent may be connected into a more manegeable form by ap-
plying

1 1
— = p— — ind(w)
W+ w

where g is called the Cauchy Principal part

1 1
— = —ifw#0

P —Hw#
L 0 if 0
—_ = w =

Sow 1

Soasn—0
—i |:<n|H(1)\n>+Z (M—m\@,u{(lnb\?a(e k))]t
Cut) = e " A

i n|HD k> 2 7, .
1 [<n|H(1)n>+ S ksin %] T S i [ <R HO B> 26 (e )t

Again, recall that from non-degenerate perturbation theory, the term in
brackets is our 1st and 2nd order energy corrections (e(") and €?). So let’s
just call the stuff in brackets Ae

Mk~ |2

. (1) | < n|HY|E > |
Ae = <n|H \n>+§ OO
k#n, €n €L

CTL (t) et 6774/}?9‘/ 6_% Zk#n ‘<n'|H(1)‘k>|26(Enlc)t
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Now note that the second exponent looks like our Fermi’s Golden Rule rate
I'=Z| <nHD|k > >p(€,r) except that it is off by 3.

C,(t) = e%éd e 2t
_r
Let 2T = 5

i
—iAet —I t

Cn(t)=e"% e 2

Now we can find the probability P, (t)

P,(t) = Cu(t))> =T

P.(t)=eT"? (34.2)

This represents the exponential decay of the initial state as we derived pre-
viously. In fact the expressions are identical.

Now one can go and find Py (t) but since this is identical to the previous
derivation we just simply reproducte the result here.

M p>|2
Pijsoo(t) = <A In>] (34.3)
(62024 2222

where €, = € — €, and where I' =4T and T = 75| < n|HMk > 2p(ens).
This is our Lorentzian lineshape for the other state. This can be considered
as absorption broadening of a transition due to an unstable initial state.
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Chapter 35

Maxwell’s equations (and
units)

When working with Maxwell’s equations watch out for the units being used.
Maxwell’s equations will look different with different units. Authors some-
times don’t mention overtly what basis they are using making it easy for
you to get into trouble. (Some people like CGS because the equations are
more symmetric). Below are the diferential forms of Maxwell’s equations in
the absence of magnetic or polarizable media.

SI CGS
v.E-P" V.E =4l
€0 €0

. . OB . . 18B

E=_-—"" EF=_—-2=
V x 5 V x "
.- . 10E . - 47 - 10E
VxB—qu+c—2§ VxB=—J -

Energy density:

ST CGS

1 . 1, = 1 / = _
= — E2 —B2 = 5_ E2 B2
G u= (IBP+ |BP)
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where in all cases

E = electric field

B= magnetic field

J = current density

p = charge density

€9 = electrical permittivity in vacuum
o = magnetic permeability in vacuum



Chapter 36

Maxwell’s equations (Electric
and Magnetic Fields)

Here we will briefly review E and M since what follows this will be a more
detailed description about the interaction of light and matter.

Previously we considered things semiclassically. We treated light as
waves and matter quantum mechanically. But this semiclassical treatment
is not strictly correct because in reality both light and matter should be
treated quantum mechanically.

One glaring inadequacy of our previous semiclassical treatment of light-
matter interaction is the failure to predict spontaneous emission. We got
absorption and stimulated emission but we never found one for this third
important process.

In ST units let’s start out with Maxwell’s equations and assume no stray

—

charges are present (p = 0) and that no currents are present (J = 0).

V-E=0 (assumes no charges) (36.1)
V-B=0 (assumes no magnetic monopoles) (36.2)
. - 9B

E=—— 36.3
V x 5 (36.3)
- = 10E E
V XxB= 0_283_15 = ,U«Ofoaa—t (assumes no currents) (36.4)

Now rather than work directly with E and B it turns out to be more
convenient to work with two related quantities called the vector potential
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A associated with the magnetic field and the scalar potential ¢ associated
with the electric field.

One simplification from this is that it allows us to describe E and B
not with 6 quantities (3 for both E and B) but rather 4 (one for the scalar
potential and 3 for the vector potential).

Using A is also particularly convenient because as we will see it arises
naturally in the Hamiltonian for a charged particle in the presence of a field.

In the work that follows we will need three vector math relations:

)

F
(B) V x (§F) =0 (curl of a gradient is 0)

0 (divergence of a curl is 0)

(A) V- (ﬁx

<l

X

(©)

A word on notation:
Now proof of (A):

ﬁxﬁ)=§(§-ﬁ)—§2ﬁ
\Y

= del = grad.

(E'>$|Q‘) N
|

J
o 92 8y | &L 2
or Oy 0Oz oxr Oy
Ay

= (% & &) [i(%-5) (3 -2) k(5 -2
0 {BAZ 6Ay] 0 {8AZ BAm} 0 {8Ay BAm}
Ox | Oy oz Ox 0z 0z | Ox oy
_ A, B %4, B A, L A, L 94, B A, 0
Oxdy Ox0z Oydr Oydz z0x 0z0y

(Note we are not dealing with QM right now, more loose on the order of

operation. )

Proof of (B):

where

and V x (§F> is



F2E =
2o
¥ =
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O?F

_7 PF B O*F = PF B PF A7 OPF B
-\ 9ydz  Oydz J 0xdz  0x0z O0xdy Ox0y

Now start with Maxwell's Equation (2) V - B = 0. By math relation
(A) B must be the curl of something. Call this something A, the vector

potential.

—

B:§><A'

Now using this relation for B plug it into Maxwell equation (3)

. . OB
EF=——

V x i

= — 8 — —

Vsz—a(VxA)

exﬁzﬁx%

. . o 94

VXE‘FVXE—O

§X<E+8;3>=0

Now since vector math relation (B) says that V x (ﬁd)) = 0, by inspec-

tion we associate 6(}5 with (E + %—’5). Also an extra sign is added to ﬁgb for

convenience.

or

(36.5)

(36.6)

)=o
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Summary

We have now re-expressed E and B in terms of ¢ and A

3=V xA (36.7)
oA
E=-V¢— > (36.8)

However right now there are an infinite number of possible choices (com-
binations of ¢ and ff) that will work. (There are many ”gauges”). So we
have to impose some constraints (i.e. choose a partlcular gauge eventually).

To demonstrate the many possibilities let A=A+ VX where x is any
function of 7 and t.

B=VxA+(VxVx)
But we know from vector math relation (B) that V x Vy = 0 so B =
V x Aor B=YV x A’ are the same thing.

Similarly we can show the same for ¢.
Let A’ = A+ V. put this into

. - 9A
E=-Ve—%
Fe 9o 2 (i %)
Bt
S o 04 OV
S ¥ A v/
E=Vo o "o
. = Vox OA
E=-Vor 5 ~ &
> = dx oA
F--o(o-%) -4

Call ¢/ = (¢ — &)
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E=—vd -5

where x is again any function of 7 and t.

Summary

General forms of A and 10,

A=A+ Vy (36.9)

¢ =¢ (36.10)

where x is any function of (r,t)
Now let’s go back to Maxwell’s equation (4)

OE

ﬁ EZ 06031‘:

Wherenovvg:ﬁxgandﬁz_ﬁgb__

Now we have to involve vector math relation (3)

V x (ﬁxﬁ):§(§ﬁ)—§2ﬁ

TR Vo 024
_ 2 — -
V(V-A)—-V*A = peo < 5 52 >
Lo B O?A
2 —
V(V-A)—V°A=—e 5 Ho€0 523
o 24 .o Vo
2
-V A+;L060W+V(V-A)+ﬂ060 5 = 0
~V2A + ,uoeo {V A+ o€, t] =0

Life would be great if the last two terms were 0 since then we have the
wave equation for A.
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So the Lorentz gauge is invoked where its constraint is

VAt e =0 (36.11)
leaving
o A
2 —
—V°A+ MOGOW =0
or
V2A — poeo g =0 (36.12)
or
V2A- L0 —¢ (36.13)

Keep going, we will derive a similar expression for ¢.
Using Maxwell equation (1)

use

where
V- A=—ppeg— (36.14)

from the Lorentz condition.

-V -Vo+ ,L60€0§ (—¢> =0

2
o2
2

> 0
~V?¢ + Moeoa—t;b =0

—6-6(,25-1—”060 =0

2

o))

%Y=

e

<
-O-

V2 —

$=0 (36.15)
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Summary
V2A - LZA g (36.16)
= 2
Vi — 522 =0 (36.17)

But recall that ¢ and A are in general not unique.

A=A+ Vy
=¢- X
The Lorentz condition then gives us a way of choosing a gauge
V-(A4Vy) = —M0€0% <¢ _ ?9_1‘)
V-A+ 62X*‘Moéo% - MOGO% =0

- o2 - 0
Vix — MOGOW)QC + (V CA+ ,u060—¢> =0

ot
62X - MOGO% = V-4 Mot’o%
But from the Lorentz condition
VA= poco e
V2x — poeo 2 =0 (36.18)

This equation provides a criteria for choosing a gauge when transforming
between gauges.

Here we assume a free electromagnetic field with no current, no stray
charges and of course no magnetic monopoles.
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Now we go and solve for A

g LA
2 o2

The general solutions to the wave equation are of the form

=0 (36.19)

A = Agcos (wt — k- 7+ ¢p) (36.20)
where
w? = (ke)?
w =27V
27 w
]{j = — = —
A c

¢p = phase shift

Aqo = amplitude and direction
w = frequency

k = wavevector.

From this expression of the vector potential we can derive an expression

for the electric field &

E:%%

Now we will assume that the scalar potential is constant so that

. 04

E=-—— (36.21)
E = Agsin(wt — k- 7+ ¢,)(w)
E = wAysin (wt — k- 7+ ¢,) (36.22)

Desired expression for the electric field.
Furthermore, from the Lorentz gauge constrain V - 4 + Moeo%, and the

assumption of a constant scalar potential (¢ const) we get V-A=0and
using A = Agcos (wt —k -7+ ¢p)

A= <A0mcos(wt — k- 7+ @), Aoy cos (wt — k- 7+ ¢p), Aoz cos (wt — k- 7+ ¢p)>
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- - O0A 0A O0A
V-A—%-i-a—y'i'a—
= —ky Aoy sin (wt — k- 7+ ®p) — kyAgy sin (wt — E-7+ &p) — k2 Ap, sin (wt — E-7+ ®p)
i k74 ép) =0

For this to be true I;:’}fo =0sokis | to ffo and E I ffo.
Now just as we found an expression for F, let’s go find an expression for

o]}

Since B =V x A and
A= (Aog;cos (wt — k- 7+ ¢,), Agy cos (wt — k - 7+ ¢,), Ao cos (wt — k- 7+ ¢p)>

A= (AOxCOS(a*IZ-?:),AO?JCOS(CL*E-?),AOZCOS(CL*IZ-F)>

where a = (wt + ¢p)

7 i k
> = Iy /6] o o
B=Vx A= 9z . Dy . B
Agcos(a—Fk-7) Aycos(a—Fk-7) A,cos(a—k-7)
o .| cos(a—Fk-7) cos(a— k- 7) 2| cos(a—k-7) cos(a— k- 7)
B=i|A, - A —7 A, — A,
’ Oy Y 0z J Ox 0z
[ dcos(a—k-7) cos(a — k- 7)
kA — A,
* v ox oy
—Z{Az(%—ky)sin(a— k-7) — Agk,sin(a—k - F)} —f[Azkmsin(a— k- 7) — Ak, sin(a — E.fﬂ
+k _Ayk:msin(a—lg-F) —Amk:ysin(a—lz-r")}
For convenience, extract the sin(a — & - #) common to all terms. This
leaves

(Z[Az(+ky) —Agk] - [Azkm — Ak, + E| + B [A ke, — Amk:y]) sin(a — k- 7)

-

Claim that the above expression is equivalent to (E x A)[— sin(—lg- F+a)]
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(kx A) =k, k, &k

€T

(2
k
A, A, A,

<
N

= ilkyA. — k. Ay — koA — kAL + K[k A, — kyA,]

(So yes, the terms are equivalent)
Therefore,

— — —

B=VxA=(kx Ay)sin(a—Fk-7)

where a = wt + ¢,

B = (k x Ay)sin(wt — k- 7+ ¢,) (36.23)
Desired expression for B. So you can immediately see from (l; X ffo) that

Bis | tok and to Ag.

Visual summary

E and B have the same frequency and the same phase.
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Maxwell’s equations ver. 2.0
(More general)

V-E = ﬁ(where p =charge density, if no charges are present then = 0 like before)
€0

(37.1)
(where p =charge density, if no charges are present then = 0 like before)

V-B=0 (37.2)

(still assumes no magnetic monopoles)

Y 0B
E=——— 37.3
v x — (37.3)
V x B= ﬂ0J+ ,U/()GOE (37.4)

(where J =current density, if no currents then = 0 like before)

Run through the same argument. Desire A and ¢ where A is a vector
potential and ¢ is a scalar potential.

Use math relations

—

Look at Maxwell (2) V - B = 0. To be true
B =(V x 4) (37.5)
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from math relation (A).
Now use this on Maxwell (3)

therefore .
- 0A .
E+ o = —Vo choose (-) for convenience
. - 0A
E=-V¢—— 37.6
o2 (37.6)

Again there are an infinite number of combinations of ¢ and A that work.

Summary
B=(V x4 (37.7)
(37.8)

Recall the general forms of A and ¢ are

A=A+ Vy (37.9)
Ix

/— - -

o=¢- = (37.10)

where x = f(7,t).
Use Maxwell’s (1) and (4) now.

VX B= M0J+M0€OE
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where

Vx(VxF)=V(V.F)-VF (37.11)
Lo g ~0p 04 .
- PA - oL =0 -
V24 + HOE€0 5 T V(V-A4)+ uonV—gb —pod =0
ot ot
_ 2 - . _ _ —
VA + Ho€o Y +V |:(V A) -+ Mo€o 8t:| ,LL()J 0
we want the terms in the bracket to vanish.
Again assume no currents (J = 0).
Assume Lorentz gauge and associated constraint
- 0
V. A+ uoeoa—f ~0 (37.12)
Leaving
—'2 - 6214._) .
A— Hoto 5 = 0 (wave equation) (37.13)
V-E=0
where -
E=-V¢-— —
ve ot



284CHAPTER 37. MAXWELL’S EQUATIONS VER. 2.0 (MORE GENERAL)

o o, V-04
VYo =0
0 =
— 2 - . —
V<o 8tv A=0
and 96
VA= — -
\4 Hogo
from above Lorentz gauge.
> o o¢
— 2 R —_ —
Vi + gy |:,L60€0 3t:| 0
—§2¢+ € @ =0
Ho€o 92
. 2
Vi — Ho€o 5z = 0 wave equation 2 (37.14)

Recall that ¢ and Ain general are not unique. There must be constraints
on X =f (7,t) when transforming between gauges.
Derived last time
=2 &x
Vix — Focogg = 0 (37.15)

is the constraint on gauge transformation.
Work in the Lorentz gauge.
Free electromagnetic field, no currents, no magnetic monopoles.
Solve wave equation 1

oo o »PA
2 -
\Y% A— /’(’OEOW =0
oo 1824
A-5— =0 37.16
v c2 ot? ( )
where ¢? = .
Ho€o
General solution
A= Aycos(wt — k- 7+ ép) (37.17)
Since E = —§¢ — %—‘f and we assume a constant scalar potential ¢
. 04
E=-

ot
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E = wAysin(wt — k- 7+ ¢p) (37.18)

Since V- A = 0 from Lorentz condition and the assumption of a constant
scalar potential

k- Agsin(wt —k -7+ ¢,) =0 (37.19)

and k& - ffg = 0 for this to be true.
Since B =V x A from beginning of section

B=—(kx Ay)sin(wt —k -7+ ¢,) =0 (37.20)
So B is L to both k and ffo.
Again,
BLE
BlA
Blk etc

E, B same frequency and have same phase. Also mention that

—

EO = —wAy
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Chapter 38

Hamiltonian derived from
the Lorentz Force

The Lorentz force on a particle with charge q is defined as

F =g(E+%x B) (38.1)
(Force on a charged particle in the presence of electric and magnetic fields)
From Newton’s equation of motion F' = mda or mr”. Therefore,
mr" = g(E + 7 x B)

To keep things simple, just take the x component.

mz" = q(E, + y' B, — 2'B,) (38.2)
We got this term from
A
U X B — x/ y/ Z/
B, B, B,

where the = component is i(y'B, — 2/ B,), x component of curl.

Now if you look at the above expression you see that we are going to
need a more explicit form for E, and for By and B,. We get these more
explicit expressions from the Maxwell relations we derived earlier.

E=-V¢— = (38.3)
B=VxA (38.4)
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From the first expression we get

oo 0A,
E,=——_-— 38.5
Ox ot (385)
From the second expression VxA=8B
i 7k
o o B!
oz Oy Oz
A, A, A,
04, O0A,
B, =— ( 9 9s ) (38.6)
0A 0A
B,=(—-% - == .
( o By ) (38.7)

This gives us

o [(08 DAL\ (04, A (0A. DA
U\ Tt )TV \Var T oy 9z 0z
(38.8)

Now at this point we want to find a Lagrangian that is consistent with
the above Lorentz force.
We try

1 — —
L= Emr'2 +qr' - A—q¢ (38.9)

Since from the Lagrangian we will find the Hamiltonian of the problem.
The Lagrangian equation of motion is

4oL oL
dt dq,  Og;

where ¢ is a coordinate like x, y or z.

=0 (38.10)

Note that % here in Lagrangian mechanics denotes the “total time-

derivative”. It is defined as

N N
d_d , 9 .9
== +;qi8qi +> g 57 =" (38.11)

i=1
Now it is apparent that to evaluate the Lagrange equation of motion

with our assumed Lagrangian we need % and g—f

Calculate %
T
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L 1
% = §m2x' +qA, = ma’ +qA, (38.12)

oL
Calculate o

B_L 8A o9
Oz 8x ™ Ox

Now replace the above two expressions into the Lagrange equation of
motion and see what we get.

(38.13)

i a6
max +qA)—qr8—+qax

(2o, ) - <8Am 0A, 8AZ> n 0¢

i 0

=0

mx—i—

dt oz’ Ox ' Ox q%

Recall that we are dealing with the total time derivative.

et + M (x,aAw ,0A, ,aAz> 96

7 o +y I + 2z o +q%=0 (38.14)

The total time derivative is defined as

= N N

dF(t,7,r) BF
- 6t Z

=1

So

(38.15)

. dA; [BAm 04, 04, 0A, ]

T g /
dt ot e Ox Ty oy Tz 0z

No other terms since 4 is a function of 7, t. Replace this into our original
expression to get

ot ox dy 0z Ox Ox

i OAe(0AOAs OA\ (DA, | 04, | 0A), 09
T TI\" o Y oy 9z ) ¢ y 192

Ox Oz ox
04, OA 04, OA ¢
! T Y / T _ ¥4
[y<8y 3m>+z<3z 3x>]+q6 =0

ma’ +q (aA‘”” +a' Oy +9 94, + 2 an) —q (x' 04y + 9/ 04, + 2/ 6(54 >+qg¢ 0
X

=0

ot
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e (QAe O8N T (0A OAN | (0As 0AN] _
N o) 1Y oy o2 9z oz )|
8A, ¢ 04, OA 04, OA
124 €T ik ! —Ti_y 4 Ii z —
me +q{(8t+8x>+y<3y 3x>+z<3z axﬂ 0

o[ 04 06N, (0A, 04\ . (0A. 04,
me =4 ot az) Y\ ez oy )T\ oz B
(38.16)

This expression is identical to the Lorentz Force and shows that our

choice of Lagrangian was appropriate.
Now that our Lagrangian is deemed good, we can go and find our desired
classical Hamiltonian through

H=p-7 L (38.17)

where p'is called the conjugate momentum.

]_ - — —
L= Emr’2 +qr'-A—qod (38.18)

The conjugate momentum is

pi = ar! (38.19)
or alternatively 5
. L
p= o (38.20)
p=mr +qA (38.21)
and conversely
v = (ﬁ — qu> (38.22)
m

(we will use this expression)
The classical Hamiltonian is



H=p-7 L
=57 —om? g At g0
) R R e
:ﬁ-(#n;qA’)(ﬁ—z:f'Yq(ﬁ—q/_f) g+q¢
N2 L N o
:<p—2:;4> +p (pn;qA)q(p—:lA) A+q¢
But
ﬁ-(ﬁ*qﬂ) q(ﬁ*qzl)-ff (ﬁ*q5)<1qﬂ>
m B m - m
(7 ad)’
- m
2 -0’
==
So

(7 od) 2(red)

H=—
2m + 2m +a¢
N2
(- ad)
o T
m

=) L g

2m,

Desired classical Hamiltonian.
In general one can add any other potential V to H

22
(7~ ad)
H=—-—"—+4q0+V General expression

2m
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(38.23)

(38.24)
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The classical Hamiltonian uses the vector potential A and the scalar
potential ¢ rather than E and B directly.
Expand the squared term

(ﬁ*q@-(ﬁ*ﬂ) ="+ A gy A—qA-p

H=%(ﬁ2+q2fp—q(ﬁ-zﬁl+g-ﬁ))+q¢—|—V
e (frwe )+ G g (A 4

Let’s simplify this a little more by first noting that in the Coulomb gauge

¢ = 0. Next note that the q;;:l: term is important only at high powers. Since

we generally deal with the low power linear spectroscopy regime we can drop
this term as well.

H= (ﬁ+v)i(ﬁ-X+A’-ﬁ>

2m

Now in general - A #* A @ but in the Coulomb gauge 7' A=A4. P.
Proof:
Use p= —ihV = p- A= —ihV - A. Use a test wavefunction ¥

(ﬁ-z)zp: (fihv-£)¢= iRV - (7/;) — _ih [Z-erw-,ﬂ
— ik H-v¢+v-,&p} — i H-v+v-ﬂ "
Now remove 9 (our test wavefunction)

ﬁﬁ:-m[ﬁ-v+vﬂw

but we know from our previous work on Maxwell's equations that VA=

—,uoeo%? and¢:0,:>ﬁ-f_l':0.

pA=—ihA.V=A4A.§

A=A

3y

This leaves us with
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2m m

i (L) 129 a5

Our desired final expression for the Hamiltonian.
Perhaps more relevantly p — —thAV

22 q A P
H = (—h v —|—V> — u (38.26)
2 m

m

H=HO _ g

This should look familiar now.
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Chapter 39

Interlude

Ok, so now you're wondering-great we went though all this work to obtain
a new Hamiltonian which ultimately describes the interaction of light and
matter. But didn’t we use another form of the Hamiltonian before?

72772
H = Yy L, p
2m m
HY = ~L(4.p)
m
versus
22
H = _hV +V —pu-e
2m
HO = €

Are they the same thing?
Recall that from Maxwell’s equation we found that

A = Agcos(wt — k-1 + ¢p)

For convenience we will drop the phase and note that Ay = Agé where é is
a unit vector and Ap is a scalar amplitude.

A = Agécos(wt — k- 1)

Now recall that € = —%—‘?
e = whpésin(wt — k - r)

295
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Consider our original version of the perturbation Hamiltonian (H M =
—ue).
HY = . whésin(wt —k-r)
= —(u-é)wAgsin(wt —k-7r)

A eiwtefik-r _ efiwteik-r
= ~wAo(p-é) 5

We invoke what is called the electric dipole approximation where e’ ~ 1.

eiwf -

e—iwt
HY = —wAg(p- ) (2—>
(3

If we choose the z component we get

iwt  —iwt
HO = whop, <%>

?

If you look carefully you will recognize that our old €y term is here

€0 — wAO

iwt —iwt
1

Sandwich this term between some test initial and final state

iwt  —iwt
<k H|n >= —¢ (%) < klpz|n >
< K|HO |p >= —@skpaln> (giwt _ gt (39.1)

Now consider our second more recent version of the perturbation Hamil-

tonian (H(") = ~ LA . P) where A = Agécos(wt — k- r)

HO = —iAOécos(wt—k-r)-P
m

iwt —ik-r —iwt ik-r
q e“’e +e e .
= —=A - P
m’ 0 ( 2 > (é-P)

Again take the electric dipole approximation e ~ 1

iwt —iwt
HU):_qAO(e e >(é-P)

m 2



297

Now sandwich this between some test initial and final states

<MHWM>:%?<&M26M><k6Pn>
where now we recognize that
P =m[HO 7 (39.2)
Proof:
0, = Dy e

Now use a commutator relation we learned a long time ago

[AB,C] = A[B,C] +[A,C|B

[P2,r] = P|P,r] + [P,7]P

where recall that [P,r] = —ifi. Therefore

oo _ b i
2h[P,r] = 2h[P( ih) + (—ih)P]
_ i(—iR)2P
N on
= P
Therefore
P:%mﬁﬂ

End of proof.
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So back to our original expression

A iwt —iwt
<kHDn > = —q"(e Te )é-<kPn>
m 2
A iwt —iwt .
- —qm" <e J;e ) é < k\%[H(O),an >
An i iwt —iwt
- —qm"% (e J;e ) & < k|[H®, r]n >

Ani iwt —iwt
- 1 °Z< re >é-<kH(0)r—rH(0)|n>

quz 1wt +e—twf> . {
e .

< kHO%n > - <klrHOn >

A 1wt —iwt
_4Ao ( re > é- ler < k|rln > —e, < k|r|n >]

A 1wt —iwt
4 OZ + c > (€x — €n)é < k|r|ln >

1wt —iwt
+e N
= —Aowpni (T) é < klgrin >

where wy, = %45+ = w. Now recall that ;1 = qr. We then have

iwt —iwt
= —Aowi <%> é < klpn >

iwt —iwt
= —Aywi <%> < klée-puln >
Now if we choose the z component we get
pwi —iwit
e e
= — Agwi <—+2 ) < klpyn >

Now recall that ¢g = Apw giving

) ev’,wt_i_e—i,wt
= el | ——5—— < klpy|n >

ev’,wt_i_e—i,wt
= € T <k:\,uz\n>

Therefore

< k[ HD|n >= Q=bpzln> (giot | oivt) (39.3)
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Summary

Case 1, starting with HY = — - €

< K HO)|p >= —toskluzinz (giwt _ o—ivt) (39.4)

Case 2, starting with H(V) = —LA.P

< k|HD|n >= shlitzn givt | gmiwh) (39.5)

Notice that the two expressions are identical if we take the Rotating Wave
Approximation and drop the 2nd term e~™*. So you see the H(Y) = — - €
approach is just a shortcut to speed things up.
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Chapter 40

The electric dipole
approximation and A

Recall from our interlude where we showed H(") = —p.e and H(Y = ~LA.P
were equivalent we had € « sin(wt — k - ) and we applied a Euler relation

to get
ei(wt—kr) _ e—i(wt—kr)
€ X
21

ezwtelecﬂ" _ efzwtev,k-r
x ,
22

Now here we invoked what is commonly called the electric dipole ap-

proximation
eFr
or

PSS |

This Taylor series approximation is valid if (k- r) is small.

To show that this is valid, take r of molecular dimensions and k& = 27”
where X is the wavelength of visible light. Here assume r = 504 and k& =
Zr — 27 _ (500 nm light).

A 521034
27
kr =50 —= | = 0.0628
" <5000>
So k - r is small and the Taylor series approximation is valid.

301
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Now let’s take another aside to find out a more explicit form for Ay (as
in A = Agcos(wt — k- r)) where Ag = Apé and é is a unit vector.

Ok, the quantity Ag is related to the energy density of the field.

Picture a volume V and the time average E = Nhw where N is the total
number of photons with individual energy fw.

E = Nhw = /d?’r < energy density >

where the energy density defined in SI units is

E2+L B2
U:M (40.1)

We have expressions for both E and B from our work on Maxwell’s equa-
tions.

A = Apécos(wt —k-r)

E = wApésin(wt—k-r)

B = —(kxé)Apsin(wt—k-r)
Note that we have dropped the phase factor ¢,,.

To be further useful let £ = kn where n is a unit vector and k = %
This leads to

B = —k(n x é)Apsin(wt — k- )

B = f%(n X é)sin(wt — k- r) (40.2)

Now using these expressions for £ and B we solve for the energy density
and in turn get the average energy density. Just do %\BP and we will find

that it is actually equivalent to €o| E|2.

A2 2
BP = 28 (nxélsin®(wt—k-7)
C
1
el 6002

Ho

since

copo = (403)
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Putting it all together

1 A2 2
—|BJ* = (eoc?) 0;) (n x &)*sin®(wt — k - )
12 c
L B> = egA3w?(n x &)?sin?(wt — k- ) (40.4)

By inspection 1E|B\2 = ¢9|E|? and as a consequence

U =¢lEJ? (40.5)

Now we want Uy, = eoqw? A3 < sin®(wt — k- r) > but we know that the
average value of sinx = % therefore

U(wg = EOW;A2 (406)

This is the average value of the energy density.
Now back to Ey.

2A2
E,=Nhiw = /d?’r <€OMTO>

2A2
—60w2 0 /d?’r

eOwQA%V

where V is a unit volume.

Agz =

Ay =

) (40.7)

alternatively

Ag = (&) (40.8)

in SI units.
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Chapter 41

More electric dipole stuff

We know that

HY = ;.

and

g — _94.p
m

are basically equivalent, where
A = Agécos(wt — k- 1)

ignoring the phase ¢p and

w2

_ h (N
B 2m2eqr \ V

Now we will rederive our transition probabilities using this second form
of the perturbation Hamiltonian with the explicit form of Ag. From before,
in the interaction representation and 1st order time dependent perturbation
theory, we have

1 t ’o !
P=— / dt' et < 1 HO|n >‘
17

0

where £ is the final state and n is the initial state and wy,, = %52,

Rather than shove into this the following

305
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e a) H) is constant
e b) HV o sinwt
o ¢) H")  coswt

like we have done before we will put in H() = =-Z1A.P.

1 2

72
1
52

P =

t !
/ dt' et < — LA P>
to m

¢ , 2
/dt( Lygiwrnt < kA Pln >
m

where A = Agécos(wt — k- r).

1 2

h2

t ,
= / dt' (— q)emk”t < k|Agcos(wt — k- r)é- Pln >
m

Ok, to simplify life we take the electric dipole approximation e?*” ~ 1 so
that cos(wt — k- r) — coswt.

1 2

t :
- / dt/(—i)e“‘”*’”t Apcoswt < k|é- Pln >
1o m

Now recall that P = Z2[H(©) 7] then we get

1 2

h?
1
52

ot !
./ dt’ (— 1 —)e™knt Agcoswté- < k|Pln >
m

t 2
/ dt' (— m) givent AocoswteF < k[[H® 7]|n >

The bra-ket stuff simplifies as

= <k|H0r—rH0)|n>

= <k|HO%"n > - < klrHOn >
= ¢, <klrln>— <klrln>e,

= (e —€,) < klr|n >

Replacing this back into our original expression we get

1 2

h2

! q f’ €k — €n
/ dt' (—=)e™*nt Agcoswtim é < klr|n >
m h
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where wy, = %32

t o ’
/ dt (,q)e“’knt Agcoswtiwgpé- < k|r|n >
¢

0

T2
Now convert to transition dipole form like we are accustomed to seeing

1 2

h2
1

h2

t 7
/ dtl(*iwkn,)e“"’“"t Apcoswte- < k|grin >
¢

0

t ! 2
/ dtl(_l'wlcn)eiwk"t AOCOSWt < k|é . qr|n -
i

L0

where p = gr. Now we get

1

h2

t !
/ dt/(iiwkn)elwknt Aocoswt < ]{:|é . /J’|n >
2

0

Take the z component like usual.

1 2

2
_ Al < B> /t i it st
h ¢

L A Kin 2 P [t
i

i :
/ dt' (—iwpy )™t Agcoswt < k|p,|n >
Jtg

2

0
2

K2 2

0

2 42 2 t , , 12
= wlmAO‘ < kLIU’Z‘n > | / dt, (ei(wkn-‘rw)t + ei(wkn*w)t )
4h Jio

Ok, at this point you realize that you can simplify life by looking at either
the resonant or non-resonant terms separately. Then its just an integral over
1 term.

However if you want to brute force this integral you can go ahead and
do it. Just drop the cross terms because they turn out to be small.

You basically get (consider the integral separately for notational conve-
nience)

t

. 1t X ’
ez(wkn+w)t ez(wknfw)t

(Wi, — w)

i(Win + w) ,

Lo to
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now if £y = 0 we get

ei(wkn—l—w)t 1 ei(wkn—w)t 1

; + —
Z(wkn + w) Z(wkn - w)

In each case just like we've done many times in the past, extract out
Wy Fw)t (Wpp —w)t

e 2 ore” 2 . We then get

W(wpp +w)t (el(wkn‘l’w’)t _ ez(wk”+w)t>
e 2

i(Wn + w)

Wy —w)T —i(Whp —wW)E
H(Why —w)t e 2 — e 2
+ e T :
(Wi, — w)

2ew (ei(wkn“!‘w)f’ — e_i(wkn"'w)t)

(Wkn + w) 2i
H(Whp —w)t Wy —w)t —i(Wpy —w)t
n 2e” 2 e 2 —e 2
(Wi, — w) ( 24 )
(Why +w)E H(Why —w)t
Ze% . (Wkn + w)t 26% . (wkn - w)t
= sin( )+ sin( )
(W +w) 2 (Wen — w) 2
Now we square this expression and drop any cross terms.
4 t 4 —w)t
| |2 ~ - SinQ( (wkn + CU) ) + S’l:nQ( (wkn w) )
(Wrn + W) 2 (Whp, — w)? 2
b o “haAB < Hlusfn > P
B 4R?
4 t 4 —w)t
28i 2((wkn +w) ) SinQ((wkn w) )
(Whn + w) 2 (Wkn — w)? 2
N wi A3l < klu.|n > |? sinQ((wk”—;w)t) sinQ(M)
h? (wWrn + w)? (Wen — w)?

Since w — wygy, or W — —wy, but not simultaneously we get two transition
probabilities.

5 o (W Fw)T
Py = Cin ARkl n>? sin? (=) (41.1)
k,abs 72 (@hon +w)2 :
w? AZ|<k|pz|n>|? si’n2(4(w’m7w)t)
Pi ooy = Lin o <kluzln> 2 (41.2)
k,emm 72 (@hon —w)2 :
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These are the absorption probability and stimulated emission transition
probabilities respectively.

If you wish recall that ¢g = wAp and you have identical expressions to
that derived previously. Note that some texts will show ¢, = —wA,. This
is because they have defined A = A,écos(kr — wt) as opposed to what we
have done which is A = A4,écos(wt — kr).

62‘<kmz|">‘2 sinQ(w)
Plc,abs o~ L 12 (wkn+i)2 (41'3)
o Bl<kluzln>|? sin?(Chm )
Pk,emm — 72 (Wi —w)2 (41'4)

These expressions are identical to those found previously, starting with
H") = - € instead of H(") = ~LA.-P.

Now since we want to get the transition rate we can integrate this over
a distribution of final states. As before consider p(wy) constant.

p(wr)dwy

2| < k|pyln > [2 sin?(Lntedly
Pk:!]""oup—abs

— 00 h2 (wkn + w)Q
. WinFw)t

b < Hlpeln>P /w sin? (Latell)
h2 —00 (wkn + w)Z

dw ke

Let x = (wp — wy, + w) and dx = dwg. The limits of integration stay the
same.

_ @ <klpaln > Pplwn) [ sinY
- h? 2z

where we know from before or from a table of integrals that

et sinQ‘%t 7t
5 dr = —
S @ 2

We then get
_ &l < klpsln > Pp(wr)mt
oh?
_ meg| < klpsln > Pplwn)t
o2h?

Now recall that p(wy) = hp(er) giving

_ meg| < Klpa|n > Pp(er)t
oh
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The total group transition probability is

Py group—abs = %6(2)‘ < klpz|n > [*p(er)t (41.5)
The total transition rate is
dP Toup—abs
R = Peagumas — £ < Kl fn > p(e,) (41.6)

This is Fermi’s Golden Rule again.
Now let’s do the same for Py group—emm and Ry group—emm

' eg| < klpln > ? siﬁ(M)
Pk,g'roup—emm =

hQ (Wk *W)2 p(wk)dwk

dwk

€| < k|ps|n > |2P(W]c) /°° sin?(in )l
h? Joo  (Whn —w)?
Let x = (wy — w, —w) and dx = dwg. The limits of integration stay the
same and recall from a table of integrals that
00 aim2( Xl
sin” (% t
[ e,
) @ 2

We then get
eo| < klpsln > |? wt

= hQ P(wk)E

meg
2R
Convert from p(wy) — p(ex) and p(wy) = hip(ex) to get

Kz P W
| < Klpzln > [Pplwp)t

7T6(2)

= | < kluln > *p(er)t

Pk:,g’roup—em'm, = %6(2)‘ < k|/~“z|n > ‘zp(fk)t (417)

The transition rate can be obtained from this

de roup—emm m
Rk,group—e'm,m, = % = ﬁGg‘ < k|,uz|n > \2p(ek)
giving
Ry group—emm = 2_7%6(2)| < klpz|n > |2P(€k) (41.8)

This is Fermi’s Golden rule again.
Notice again that the rate of absorption and stimulated emission is equal.
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Summary

Ph group—emm = 355 < klpz|n > [*p(ex)t (41.9)

Py group—abs = mr€a| < kluz|n > [2p(ex)t (41.10)

R = Mhareww=abe — 2.2 < klp.|n > [>p(er,) (41.11)

R group—emm = 35€5] < Klp[n > [*p(er) (41.12)

where in all cases ¢, = wA, and 4y = F%—Z (%) Again recall that some
texts have €, = —wA, because they define A = A écos(kr — wt) versus

A = A écos(wt — kr) as we have done.

Alternatively

Alternatively, recall that an alternate ¢ — oo expression can be derived.
This is done by invoking an alternative definition of the Delta function.

§(@) = limy oo 22ola2) (41.13)

So starting with

~ 6(2)| < k|:uz|n > ‘2 S’an(W)

P ans —

DO~

Let © = (wgn +w) and a =

. 2wt
ST _ rab(e) = %ta(w,m +w)

@< Hln> 2t
3 S 7:!/2 2

o
ﬁea < klpzn > 26(wpn + w)t

S wen + w)

12

where §(wyy, + w) = hd(egy, + €). Our desired ¢ — oo transition probability
is therefore

Piabs = 38| < k|pz|n > |20(epn + €)t (41.14)
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The transition rate is

de abs
R= Tl
dt
Rk,abs = %6(2)| < k‘uz‘ > n|25(6kn + 6) (4115)

This is the desired transition rate as t — 0o. It is also called Fermi’s Golden
Rule.

Now go back for the other emission process.

€| < klps|n > |2 sin?(Lndly

P EMNIM ~
k, L FLQ (wkn _w)Q
Ast —
2 2
€| < klpzln > |7 7t
Pk,emm s h2 ?5(wkn — w)
2 2
7e}| < bzl > |
Owp,, — w)t
o2 (W = )

where §(wgy, — w) = (€, — €). The desired ¢ — oo transition probability is
therefore

2
Premm =~ G| < Elueln > 26(epn — )t (41.16)
The transition rate is R = Zemm which ig
2
Ry cmm = 52| < k|pz|n > |28(exn — €) (41.17)

This is the desired transition rate as t — 0o. It is also called Fermi’s Golden
Rule.

Summary
Py abs = - 65| < klpz|n > 26(epn + €)t (41.18)
Prcmm =~ 58| < Elpzln > 28(e, — e}t (41.19)
Ry aps = 3=€2| < k|pz| > n|?6(exy, + €) (41.20)
Riyomm = 28| < klpzln > [28(exn — ) (41.21)




313

620—2(%) Again recall

some texts define €, = —wA, due to them using A = A écos(kr — wt) as

where t — 0o and in all cases ¢, = wA, and Ay =

opposed to A = A écos(wt — kr) as done here.

Higher order electric dipole

Finally, one can go to higher orders in the electric dipole approximation by

going to more terms in the Taylor series for e’*” or e="7,

eFT o~ 14ikor+. ..
e T~ 1 Gker—+...

Then A = Agécos(wt — k - r) becomes

Agé

h S
Il

(ei(;utfk-'r) _|_efi(;utfk-'r))

> (ezwte—lk-r + e—zwtetk-T)

where e=#7" ~1 —jk-r and e*" ~1+ik-r

Apé , )
A = Toe (ewt(l —ik-r) 4+ e (1 +ik- r))
Apé , ) ) .
— Toe (ezwt ik - retwt + et + ik - Tefuut)
Apé , . ) . )
— £p¢€ (ezwt + et g r[ez.ut - efzwt])
2
A = Apé(coswt + k - rsinwt) (41.22)

and you can see that H(!) = —%A - P becomes much more complicated.
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Chapter 42

Second quantization

Now at this point I have 2 choices. I can either related my Ry cpm and
Ry, qps transition rates to what are called Einstein A and B coefficients or 1
can go and do second quantiztion.

Here is why we will do 2nd quantization first. Einstein’s A coefficient rep-
resents the rate of spontaneous emission. Recall that I mentioned that one
of the problems with a semiclassical treatement of light-matter interacting
was that we treated the light classically and matter quantum mechanically
when in fact both should have been treated quantum mechanically. As a
consequence we found expressions for the transition rate of absorption and
stimulated emission but never one for sponetaneous emission.

Hence we will quantize the field here and in turn find that spontaneous
emission arises naturally from this treatment and in turn all these derived
rates can then be compared to Einstein A and B coefficients.

We found earlier that

A = Agécos(wt — k-7 + ¢p)

We can ignore the phase ¢p. Also 4p = ﬁ(%) We have

eow
A = Apécos(wt — k- 1)

We want to express this classical form of the vector potential in a quan-
tum mechanical manner. We will take the vector potential to be a superpo-
sition of allowed cavity modes. These cavity modes are subject to boundary
conditions and in turn experience quantization effects (i.e. allowed energies
or frequencies are restricted)
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We will index the cavity modes by k. A will be described as a sum
over allowed cavity modes k£ with a time dependent and spatially dependent
component.

A(r,t) = \[ 2 S g (r) (42.1)

The sum also runs over 2 possible polarizations for each k but this is sup-
pressed for notational convenience. Here ¢ (t) is a time dependent ampli-
tude.

qi(t) = lgnle™! (42.2)

and py(r) is a position dependent term

pr(r) = éetrr (42.3)

An expression for a classical Hamiltonian is given by averaging the energy
density over the volume of the cavity. The radiation Hamiltonian is therefore

H,.g= / (energy density)dr

where the energy density is expressed in SI units.

_ («lEP + £IBP)
2

.€0E2_|_1_
H., — /—ulBl?dr
2

_ %/EP+8B%r

H,a =% [|E|* + ¢*|B|%dr (42.4)

Now we're going to go and solve for this Hamiltonian. Recall that

0A

E:*E

and

B = Vx4



From this

/1 Oqy.(t)
E=- eo_V; En (1)

where qi,(t) = |qr|e*".
Next let’s go and find B.

B=VxA= \/EOLV;%@)(V X pg(T))

where (1) = ée?*" and where é = (&, 7, 2) Here
ik

—| 2 2 o2

V x K (T) — | oz Oy 0z
etkr gtk giker

This reduces to

- 0 ik-r 0

_ -~ Y ik
- Z{aye 82 ]7
o 0 ik-r 0 ik-r
_]{a_xe - 92 ]ﬂ
2 0 ikr 0 ik
k[é?xe dy ]

= i[ik,e* " — ik, e* ),
73 [,Lk$e’bk’r‘ o ikzeik"r’}’

Elikye™ T — ik, e

317

(42.5)

=0 [Z(kyelkr - kzeik.r% _j(kweik.r - kzeik.r)a lz;(k¢elkr - k’yeik.r)

Claim that this is equivalent to i(k X pg)
Check

i J k
ke ky, k.

eik-r eik-r eik-r
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This equals

— g(kyeik-r o kzeik-r),
3(kweik-r o kzeik:-r)’
k(kxeik-r o kyeik-r)

So therefore we see that

V x (1) = i(k x pg(r))

— o5 S Olk < e(r)]

Consider [ |E|?dr and [|B|2dr separately for simplicity and combine
them later to get H,.q4.

g (t I (t)
[E[?dr = k 1 ()( (r))dr
/ eV / zk: Hi

= EOVZ/ 6qk(t il a(tt)“ b(r)dr

Remove the time dependent terms

- S5

Then

_ t) Oqy (t)
- eOV Z 8t ot / dr
60V 3t Bt

- il

Therefore

2
g
[1BPdr = Ly, [20] (42.6)
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Do the magnetic field term now
[Bear = — [ D a @l % el L an(tlhx ol
- L [k ) e

N eoLV > la @) /Uf x i ([ x o (r)]dr

Now invoke a vector math identity

(AxB)-(CxD)=(A-C)(B-D)— (A -D)(B-C) (42.7)

So [k x pi(r)][k X pg(r)] becomes
(k- k) (pg () (r)) — (K - () (g (7) - K)

The second term is zero since uy x € and é 1 k. Here é reflects the polariza-
tion and k reflects the direction of travel.

Now pj () (r) =1

- EOLVZWW / (- k)dr

1
= — S Ea(t)?V
oV 2 | ()]

1
= = Kl
€0 %

therefore

J1BI?dr = 2 37 lan(®)? (42.8)

Now put everything back to evaluate H,,g4

Hy — €—°/E|2dr+€°c /|B| dr
60 1 gy (t) eoc 2
= k t
B GOZ\ Z |gr(2)]
3¢Jk
= —Z\ ZkZ g (t)
Y 2002 4 el o))
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Now recall that w;, = kc
1 5% Ogqi(t)
— 520 |1+ i
k
Let Py(t) = qu t) . We then get
1
== Y (1B + g )]
k

Remove | | as it is understood that Py and g are complex and time depen-
dent.

_ %ZUW? +wiqn(t)?)

Finally

Hyaa = 5 24 (Pe(t)? + wian(t)?) (42.9)

This is our quantum mechanical Hamiltonian for the radiation field.
Now we will define raising and lowering operators where o' is a raising
or creation operator and a is a lowering or annihilation operator.

a= \/Q%—wk(wk% (t) + iP(t)) (42.10)
al = ﬁ(wk%(t) — iPy(t)) (42.11)

If you now act on a state with these operators say a state with n number of
photons in mode k denoted |ny > you get

al|lng >= /g, + 1|ng + 1 > (42.12)
alng >= /nglng — 1 > (42.13)

The effect of a (raising or creation operator) is to increase the number of
photons by 1. Conversely the effect of a (lowering or annihilation operator)
is to reduce the number of photons by 1

e o' is associated with emission

e o is associated with absorption
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Now we can re-write H,,q4 in terms of raising and lowering operators just
like we did in the harmonic oscillator case.
First evaluate a'a

dla = o longs(t) - ipe(wngi(®) + ipi (D)
Wi
= ﬁ[wi?q;z (t) + dwrgr ()pr(t) — iwrpr(t)qr (t) + PP (1))

= %wk[w;%qz(t) + ()] + 2711wk [iwrar (t)pr(t) — iwrpr(t)qr(t)]

2hwk
1 .1

For 2

= 5 Ra(0) + )] + o an(pe(t) — pr(t)an(e)

(wRab(t) + PR + o

[qr(t), Pr.(t)]

where the last term is a commutator. We get

aa = Hz2d + gy (t), Pi(t)] (42.14)

hwy,

At this point we need to evaluate the commutator explicitly.
First g (t)

al = (wrgr(t) — iP(2))

Put them together

From this

ax(t) = \/%(cﬁ +a) (42.15)

Next for Py (t)
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Putting them together we get

(a_aT) = \/m(zlpk(t))
2
= h—wklpk (t)
From this we get
Py(t) = iy/% (ol — a) (42.16)

Now we can go and find the [gx(t), P, (t)] commutator. But we need a
few more things. We need some common Boson commutation relations.

[al,al] =0 (42.17)
[ak, ak] =0 (4218)
lax,al,] = 6, (42.19)

Back to our original commutator

g6 (t), Pe(t)] = qu(t)Pi(t) — Pr(t)ar(t)
- %(aT +a)at —a) - %(aT —a)(a! +a)
- %[(aTaT —a'a+aa’ — aa) — (ala’ +a'a — aal — aa)]
= %[—aTa +aa' — afa+ aal]
= ih[—a'a + aal]

= ihlaa’ —ala)
= ihfa,a]

where recall that [a,al] = §, ,/ therefore we get

Qi (t), Pe(t) = ih5k7k/ (42.20)




Now going back to our expression for afa

H, i
+ _ rad,k e 1), Pu(¢
a'a T + 2h[‘]lc( )> Pr(t)]
Hradk T,
= —= 4+ —(ihd, ,s
R AL
H’I"ﬂ(, 9 1
_ dk L5
hwk 2 mE
. Hrad,k 1
N hwk 2

From this we get

Hra,d,k = hwk(aTa + %)

where now Hyqq = > p Hradk

Hra,d = Ek hwk(aTa —+ %)

This is our desired form for the radiation Hamiltonian.
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(42.21)

(42.22)

Alternatively, let Nj be the number operator and define N, = a'a. We

then get

Hrad = Zk hwk(Nk + %)

(42.23)
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Chapter 43

Coupling of radiation to
matter

Here we will describe the coupling of radiation to matter using second quanti-
zation. We will obtain and expression for the emission transition probability
that explicitly includes a term for spontaneous emission.

Recall that A = Agécos(wt — k- 7+ ¢,,). We ignore ¢, phase so that we
get

A = Apécos(wt — k- 1)

classically and also

A= eOLV Ek: Qs () e (2)

iwt k-r

quantum mechanically where here g;(t) = |gle™® and py,(r) = ée’

We basically want to express
HY — _ W€

in terms of our new quantized radiation field.
Now like we’ve always done we will take the electric dipole approximation
(or long wavelength approximation) and say e’*" ~ 1 or e 7 ~ 1

A = Apécoswt

classically and alternatively

A=/ EOLV;Qk(t)é
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quantum mechanically.
Next we recall from our work on Maxwell’s equations that

24
ot

_ 1 Z éa% (t)
60V A ot
Next recall that we previously defined an operator

_ qu (t)
dt

€= \/GOIV%:éPk(t)

Ok, now recall that Py(t) can be defined in terms of photon lowering and
raising operators a and a'.

P (t)

resulting in

al =

\/%—wk(wk%(t) —iPy(t))
1

= (wrar(t) +iP(t))

vV 27ka

where qi(t) = |g|e’“*!. Putting these together we get

(=) = —Z—(iR)
- 22 o)

leading to

Pu(t) = iy/ "4 (0" a) (43.1)
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Replace this expression into our € expression above

€ = —ZHGO—V;eMT(a —a)

h
= —7 e . -I- —
i eV Zk évwi(a' —a)

€= —iy/ 5oy Y evw(al(t) —a(t) (43.2)

where we have explicitly shown the time dependences of af and a.

Now we know that since a' and a are linear combinations of g;(t) and
P, (t) the time dependent term looks like e™*!, But this can be shown
explicitly.

ajf(t) s qgleiwnrt

a(t) — ae Wkl gTiwkl

If you think about it this revealing of a “hidden” exponential term is anal-
ogous to flipping from the interaction representation into the Schrodinger
representation.

Starting with the Heisenberg equation of motion

da 7

% - h[H7a/]

where H = H,pq = hwy(ata + %)

ih 1
= Z;:k[afa—l—ﬁ,a}
= iw[(a a+§)a—a(a a+5)]
= iwglalaa + g —aa'a — g}

= iwgla’aa —aa'a)

= iwla’,da
where recall [af,a] = —4, ,/. So we get

= —zwékyk/a
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or
da .
— = —iwa
dt
d
Do wdt
a
lna = —iwt+ const
a = age” ! (43.3)
Take the complex conjugate to get
al = agem (43.4)

Now replace this into our expression for €

€=—i % > ok e/ [agei“’kt — age k] (43.5)
and now replace this into H(") = —p - €

HD =, /% o ék)\/w_k[agewkt — age™ "] (43.6)

Now recall that a' (creation operator) is related to emission. Conversely
a (annihilation operator) is related to absorption. You can do this whole
rotating wave typoe of approximation by considering one term or the other
(but not both simultaneously).

Now we need to evaluate the transition probability from an initial state
n to a final state k.

C, =< k|H|n >

Since now both radiation and matter are treated quantum mechanically, we
write the total wavefunction as a product of radiation and matter states.

In> — |ni,ne,ng,-->|n>
|k> — ‘k1,k2,k3,--->|l€>

Therefore we have

cx =< K| < k1, ko, k3, ... |HD|ni,ng,n3,--- > |n > (43.7)
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o to simplify life, let’s take this rotating wave type of approximation

and consider only the absorption part.

then

If we

h .
Mm_ _; .5 —iwpt
HY) = ”/260V Ek (- éx)/wrage™"*

L N i
<K“ <I{;171{:27]€37""7Z 260V ;(N"ek)\/wkaoe kat‘nth,n?”_” > |7’L>

.| h ) B
—t 260V Z vV Wk < K;| < k1yk27k3,--- |(,u ek)aoe 7'wkt"n],n2,n3’... > |7’L >
k

.| nh — il R
— 2¢0V Ek: ke o < H‘ < ki, ko, ks, ... |(/j’ 61«)%‘"%"27”37“' > |7’L >

.| h i A
—i eV ;«/wke Wit < gl (- eg)|n >< ki, ka, k3, . .. lag|na,n2,ng, - - >

take the z component like usual we get < &|u.|n >

.| h —
-t 2€0V zk: ke o < K/|MZ|TL >< k17k27k37' .- |a0‘n17n27n37 e >

Here recall that a|n >= y/n|n — 1 > (lowering operator)

- h — W,
= 1 20V ; VWEy/Nge mnt < K|z 0 > (5k1,n1 0k2,n20k3,m3 - - .)

The delta functions just equal 1. We took away a photon from a given mode.
The mode stays the same.

therefore

. h —iwp,
= —iy/ eV ;,/wk,/nke b < k| |n >

Cr(t) = —1 % N Vor/mRe Wl < K|y, In > (43.8)

Now the transition probabiity is P, = |Cy(t)|2. We get using the above
expression

Pi(t) = gy Sop wnnae] < Kz, |n > 2 (43.9)
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This is the desired form of the absorption transition probability.
Now we focus on the emission.

[ h ;
M —; LA 7wt
HY) =4 eV Ek (- éx)/wraye™"

. h 5 iw
Ok(t) = < ’{| < k1ak27k37"' |ZV 2€0V E(/’L ek)vwka(];e kt‘n17n2,n37"' > ‘n >
k

.| h — iw s
-t 2€0Vz]€: ke kt<’i|<k1,k2,]{;3,,“‘(Iu-ek)aanhn%ng,--->‘n>

A . )
= 1 2€0V zk:\/wkelwkt < K,|,u, . ek\n > k1,]{32,]{:3, . ‘ag‘n1,n2’n37 el >

where af|n >= \/n + I|n + 1 > (raising operator)

h
260V

7 .
= i“2eoV ;,/wke“’kt < klp-égln > vnp +1

= 1

Z Vore™ < k- éln > Vg, + 1(651 01082,020k3m3 - - - )
%

Choose the z component like usual to get our desired time dependent coef-
ficient

Cr(t) =1 % S Vwre et < kg, In > /g + 1 (43.10)

Now for the transition probability P, = |Cy,(¢)|?

P(t) = % S wk(ng + 1) < K|, n > 2 (43.11)

This is the desired form of the emission transition probability.

You will note that Py .pp, is identical to Py 435 except that it has an
extra 1 inside. This extra 1 is responsible for spontaneous emission and
shows that there is a non-zero probability of emitting a phton even if ny = 0
(the number of photons in a mode).

So we have therefore fixed our problem of not being able to account for
spontaneous emission by quantizing the field.
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Alternative coupling of
radiation to matter

Rather than use H" = — - € try
HY =_Z4.p

m

where
1
A= JR— t t
v }k ar(t) ()

iwt ik-r

and qx(t) = |q/e™" and py(r) = éxe ‘
First take the long wavelength or electric dipole approximation e ~ 1

1
A = /=) aq@e
€0V % Qk( >ek
m - _4 LZ .
H €0V k qk(t)ek P

Next recall from our raising and lowering operators that

1 .
al = — (war(t) — i Pe(t))
1 .
= o (wai(t) +iPx(t))

€

Putting them together we get

aT+a:

2wqy, (t)

1
v 2hw

331
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from this we get

4(t) = \/ L (al +a) (44.1)

M = ¢ /L E Rat 6.
H oV 2 5 k(a +a)(é- P)
- 4 /_-LE 1 i 6.
= eV 4 \/_k(a +a)(é- P)

where recall that af and @ have time dependencies. Write it out explicitly.

al(t) = aje™! (44.2)

a(t) = age ™! (44.3)

Again this is analogous to switching from the interaction to the Schrodinger
representation.

[ R 1 ) .
HU) — fi - T W —iwpl](5 . P
m 2€0V zk: /—wk [aoe + ape ](6 )

Now we evaluate matrix elements of H(!) to get the transition probability
from an initial state n to a final state k.

Recall that

n> = |ni,na,ng,--->n>
|I{> = \n1/,n2/,n3/,--->|n>
q h 1
Cu(t) = —=4/ —
®) m 260V;,/wk
<kl < n1/,n2/,n3/,...\(a$ewkt + age” ™ ) (é- P)|n1,ng,na,--- > |n >

Now just like before we evaluate the transition probability for absorption
and emission. We can then compare these expression to our previous ones
derived using H(") = — i - €. They should be identical
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Absorption

qg | h 1 o
Ck(t) = 7m 2€0Vzk:\/w_k<k|<n1,’n21’n3l""aoe w’“t(e-P)‘n1,n2,n3,...> n>
qg | h 1 . .
= —m 2€0Vzk:—\/u)_k</€6-Pn>< n1/,n2/,n3/,...\aoe 1""kt|n1,n2,n3,"'>
¢ [ B (T
= —E 260‘/;\/(,(}_]{:6 zwm‘<n|e-P|n >< n1/,n2/,n3/,...|a0|n1,n2,n3’... >

where a|n >= \/njn — 1 >

qg | h | N
= *m 2€0V ; _\/uj_ke Kt < H|€ . P|n > (51/7162172(53/,3 .. )

The delta functions all are 1 because we simply extract a photon. The mode
stays the same.

= ;\/Ezk: \/Z:’;eiw'ct < klé-Pln >
where recall that P = 22[H(0) 1],
— _% 2::1/ zk: \/Z:ze—wkté- < k|P|n > (%m) (44.4)
T e <
[ B > ok e (< HHOrin > = < ke Ol 5] ()
. [ > ke e (o~ e) < kirin >
3y G e ke G
A > e ) < e arln > ()
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where p = gr and choosing the z component gives
1 R Nk it im
= TV oy 2y 5 ) < Bl > ()

.| h [ng (€ — €n) it
- _ E ' ALY ALY Ry iwy,
! 2¢qV k wk{ h ] < ‘u ‘TL e

€k —€En
n

where = wy

- h —qwpt
= iy /2€0V zk:\/n_k\/w_k < klpo|n > ek

Ci(t) = =i/ 527 Yo VI /@k < Elpz|n > et (44.5)

NOW Pk,abs = ‘Ck(t)|2

Py aps = % S nkwi| < klpaln > 2 (44.6)

This is the desired form of the absorption probability. It is identical to our
previous derivation.

Emission
q I} 1
Cu(t) = —— -
k(®) m\ 260V;,/wk
< I{‘ < T, Mgy Tigry - - ‘a:geiWkt(é'P)‘n1an27n37"' > |n >
q h 1 iwkt A
= — — — < - Pln >
m\ 2eV zk: 1/f.uke kle- Pln
<n1/,n2/,n3/,...\a$|n1,n2,n3,--. >

where afln >=vn+1n+1>

q h 1 iw 5
= mHmzk:_wke Kt < ,{|6,P|n > v/ ng + 1((51/’1(52/’2,53/73...)

q h 1 iwkt 5
= ——4/ — < - Pin > 1
o\ 2ev ; wke klé- Pln > v/ng +




Now recall that P = %[H(O), 7]

q n 1 iwpt N
- = § ——ek/n. + 1é- k| Pln
m 260V wke b “< ‘ ‘ ~

_ zwt 0)
= ’/2601/2\/— k nk—|—1(h)e</£\[H( ,7ln >

11,
= gy 30 B L e < g H O B O >
2¢oV " wp h
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= gD [ L1 g (0) ©
= —iq 260‘/; o ~ere [< k| HPrln > — < k|[rH™|n >]

h 11
= iy g e 6 <slin ]
. h ng + 1€n_€n fwgt 4
= —igy/ (Lot < >
iq eV ; o ere K|r|n

where wy, = “z=

. h e+l 5
= —ig ZGOVZ” o wie"F < klé-rin >

- 260VZ\/_kvnk+1ewkt < klé-grin >

where p = gr and where we take the z component.

. h —— / dwit
1 260V; /g + 1 < Kl |n >

Our desired time dependent coefficient is therefore

= —i\/ 72y S VERVAE T 16 < ks, [0 >

Now get Py (t) = |Cr(t)|?

Pk:emm(t) ZFQV kak(nk+1)‘ < k‘lu’zk‘n> |2

(44.7)

(44.8)

This is the desired transition probability for the emission. It is identical

to our previous expression and as before note the extra 1 which allows for

spontaneous emission to occur.
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Chapter 45

Emission

In the last section, the absorption coefficient of materials with different di-
mensionality were shown to be proportional to the calculated joint density
of states. In turn, one could predict that the absorption spectrum of these
materials would look like. Here we work out the background behind spon-
taneous emission, a complementary process to absorption.

Preliminaries: Einstein A and B coefficients

Picture a two level system like that shown in the figure.
Here

e N; =population in the ground state or alternatively probability of
being in the ground state

e Ny =population in the excited state, alternatively probability of being
in the excited state

e g1 =degeneracy of ground state
e g5 =degeneracy of excited state

e p =the energy density containing thermal and/or external contribu-
tions

Three processes were considered
1. absorption with total rate: BiapNy

2. stimulated emission with total rate: BajpNs
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3. spontaneous emission with total rate: ANy

Putting everything together one obtains the following rate equations for
populating either the ground or excited states

dN-
d—t‘ —  —BiapNi + ByipNa + AN,
dN-
d_t2 = BiapNi — Ba1pNy — AN,
e . AN AN
In equilibrium, the upward and downward rates are equivalent (%3 = “32 =

0). So using either of the above expressions
BiopN1 — By1pNay — AN> =0
or
BiopNy (upward) = Ba1pNo + ANy (downward)

solving for p gives

AN,
B1aN1 — Bo1 N
A
Bi» %; — Boy

where N7 and Ny are Boltzman distributed

1 & s1—cp g1 c1—20
Ny = —E e” T kRT — =—e kT
N 4 - N
i

s2—¢p 9 _£2-%0
kT

1 92
N2 = N;e_ kT = gﬁe

and N is a normalization constant. This leads to

N £1—¢€2 hv
1T 9_16_T 9w

= Z—ekT

N g 9

where hv = g9 — 1 is the energy of the photon or transition. Replace this
into the above expression for p giving

HES

o) = (45.1)

S

a
B12g26 Boy
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This is the expression for the energy density derived by Einstein. Next he
realized that this expression had to be equivalent to the Planck distribu-
tion for blackbody radiation. Expressed in terms of wavelength, the Planck
distribution is (standard textbook expression)

pp(A) = 8’;?“( 2 ) (45.2)

eXeT —1

Units: J/(unit volume unit wavelength). This expression is interesting from
a historical point of view because when the derivative of this expression
is set to zero one obtains the Wein displacement law for blackbody radia-
tion. Likewise the integral of this expression gives what’s called the Stefan
Boltzman law for blackbody radiation. In a sense, knowing or unknowingly,
Planck basically explained everything in one shot. Apparently he nearly
suffered a nervous breakdown doing it.

Now back to the main discussion. Expressed in terms of v rather than
A, the Planck energy density is (derived in the next section)

7TV3
/’10(’/):8—?r ( Tn

14
ekT

> (45.3)

1

Units: J/(unit volume unit frequency). Note that in general, in the ab-
sence of vacuum, the index of refraction must be taken into account when
considering the speed of light.

Interlude: Derivation of Planck energy density

Just like in the density of states section, imagine a sphere of radius k with
volume

4
Vi = gwk?’
where the volume of a given mode is k,k, k. (assume periodic boundary

conditions, though not necessary, just for convenience) and

2
k., = —
L,
27
k, = —
Y Ly
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The number of modes in the given sphere is then (look familiar?)
Vi %7‘1’]{73

N = =
kokyk, 873

L,L,L,

Y

For a photon now, multiply this by 2 to account for two possible polarizations
/ %71']63

N = 2N=2
8

k3
= WL:EL”LZ total number of modes
- 1

Consider the volume density
N K3 K3

= —— number of modes/unit volume (45.4)

T L.L,L. 3% 372

L,L,L,

3

7

0

Here is where we diverge a little from the past. To get the frequency density,

first let k = 27” where \ = 5 Therefore

2
g=2TY
c

alternatively 27v% if the index of refraction is different from 1. Then p
becomes

_ K3 _ 8w V3

312 363
Now like before, to get the frequency density (alternatively called the mode
density)

rd 812
p = ap = number per unit volume per unit frequency (45.5)
dv c3
Planck next showed that the average energy per mode is
hv
<e>=—
e*T — 1

Note the Bose Einstein form of the equation (photons are bosons). This
leads to the Planck distribution

pp(v) = p <e>

_ 87r1/2< hv )
c3 ez_;fl

_ 8rh? 1
a c3 eir — 1

k

N

3
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Alternative derivation
Consider the volume of a thin shell in k space. The volume is
V = dnk?*dk

nmw
LT{’J,Z '

where k., k,, k. all equal The number of modes, N is then

Ark2dk
kokyk.
Ark2dk

N =

Since there are two polarizations, multiply by 2.

2
N = 87rk:3dk L.L,L.
s

Now divide by 8 since each corner of an imaginary cube is shared by 8 other
neighboring cubes.

k2
N = —dkL,L, L

Now get the volume density by dividing by L,L,L, giving

N Kk
PT. L, =
where k£ = 2{ = 2“7” such that k? = %ﬁ and also dk = 2%Tdy. We get
47/
= 2m)d
p 5 (2m)dv
8 2
= Tr;/ dv
c

Now consider the frequency density
pdv=p

such that
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Now back to where we left off. Equate the Einstein and Planck relations

A 8w < 1 >
B12%6% — B2‘| C3 61?_; —1

where note again that if the index is not 1 then replace ¢ with =. Upon
examination of the above equation, to achieve equivalence

B12g—1 = Bay (45.6)
g2

More usually you will see g1 = go such that the expression reduces to By =
Bs1. Furthermore

i _ 8rhi?
321 - e3

yielding the standard textbook expression

8wh3

A = B
3

= = B2 (45.7)

Again, note that if g1 = g2 you will commonly see written

A=Slp, (45.8)

Also if the index is not 1 (not vacuum) then replace ¢ with £ in the above
expressions. The above final expression are what are referred to as the
relationship between Einstein A and B coefficients. Remember that A is the
one associated with spontaneous emission.

Word of caution

The Planck distribution is often written a number of ways. Different texts
will have what on the surface appear to be completely different expressions.
These difference actually arises because of differing definitions for the “den-
sity” being used by the various authors. Previously we saw two expression
for the Planck distribution. The first, in terms of wavelength, has units
of: number per unit volume per unit wavelength. The second, in terms of
frequency, has units of: number per unit volume per unit frequency. Alter-
natively sometimes what people mean is the same expression but in units
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of: number per unit volume per unit energy. This is potentially very con-
fusing. One should look very carefully at what is meant by “density”. Here
we derive this third form of the Planck distribution with units: number per
unit volume per unit energy.

Starting with

=52 (2 o

where this expression comes from the previous section where we derived
the Planck distribution and where also the index of the medium has been
explicitly considered (recall, replace ¢ with £). Rearrange the expression to

_ 8mndB h_3 _ 8md(lw)®  8wn3ed
P= 3 R3)  3c3h3  3c3h3

Now as before take the derivative with respect to energy to get the energy
density

+_dp 87n3(3e?)
P = 36313
8rnie?
c3h3
8mn3(hv)?
c3h3
8rndy?
c3h
Some authors will leave it at the second step which is just p = &CTQ—;EQ We
will go with
r 8mn3u?
=g

(45.10)

Now earlier we had the Planck derived average energy to be

hv
<E€e>=—F—

erT — 1

This leads to an expression for the average number of photons which is

<e> 1
= (45.11)

<p>=
hl/ eﬁ_l
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The resulting Planck photon density is

_ 8mniy
Pr = 3h

huv

2 1
( > number per unit volume per unit energy (45.12)
erT — 1

This then leads to another set of relationships between Einstein A and B

coefficients
s

A=8m2lp, o = 8midp, (45.14)

The only difference between these relations and the previous ones was how
the Planck distribution was defined. Number per unit volume per unit
energy (as done here) or number per unit volume per unit frequency (as
done previously).

Einstein A and B coefficients revisited

In the last section we derived the relationships between the Einstein coef-
ficients for absorption, stimulated emission and spontaneous emission. In
this section, let’s rederive the expression is a slightly different manner, but
in a way that will be useful a little later on.

Let Ry5 be the unit transition rate from the ground state to the excited
state (basically the rate constant)

R12 = Pabspds
= Biap

where

e p is the number of photons per unit volume per unit energy (note the
units!)

e pde is the number of photons per unit volume
e P, is the probability for absorption per unit time
e R, is the absorptions per unit volume per unit time

and where Big = P,sde
As before set up the rate equations except now consider explicitly the
probability of occupied and unoccupied states in the valence and conduction

bands. Let
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e fi =probability of occupied valence band state
e fo =probability of occupied conduction band state
e 1 — f1 =probability of unoccupied valence band state

e 1 — fo =probability of unoccupied conduction band state

1 — 2 transition (absorption) requires

e valence band state occupied (f1)

e conduction band state empty (1 — f2)
resulting in the joint probability being fi(1 — f2) such that

Ri2.46s = Biapfi(1 — fa)

2 — 1 transition (stimulated emission) requires

e valence band state empty (1 — f)

e conduction band state occupied (f3)
resulting in the joint probability being fa(1 — fi) such that

R21,sti7n = Boq pr(]- - fT)

2 — 1 transition (spontaneous emission) requires

e valence band state empty (1 — f1)

e conduction band state occupied (f3)
resulting in the joint probability being fa(1 — fi) such that

R21,sp0'm§ = Af2(1 - f1)

In all three cases fi and fo are Fermi Dirac distributions

1
fii = (/=
e w41

1
fo =

e ®T +1
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At this point, for simplicity, assume that gy = g2. At equilibrium the upward
and downward rates equal resulting in
Rioaps = Rotstim + R21 spont
Bipfi(l—fa) = Bapfo(1—fi) + Af(1—fi)

Rearrange this to solve for p

pBiafi(l— fa) — Bai fo(1 — f1)] = Afo(1 = fi1)

which gives

Afg(l—ﬁ)
Bizfi(1— f2) — Bafo(1— f1)
A

H(=fo)
Ri=r) ~ B
Now introduce the explicit expression for fi and fo. To simplify

1 1
E1-¢fp 17 g2—¢p
f1(1*f2) _ (e 5T +1)( T +1>

P () ()
€9—¢& £€1—¢
e RT 41 e FT 41

£2—¢1

Bio

3
3

h
= ek

N

3

Replace this into the main expression for p to get

A A
p= _ = v
B12£EL}?§ — By Biseit — By

But p equals the Planck distribution for photon density

A 8mndu? ( 1 >
p = 14 = 14
Biseit — By Sh \eif —1

meaning that for this to be true

B2 = Bay
and

8mn3 2
A==, B

which are exactly the same Einstein A and B relations we found before.
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Emission spectrum

Here we will calculate the emission spectrum of a 3D material using the
Einstein A and B coefficients. Define the (net) unit transition rate from the
ground state to the excited state.

Rnet = Pa,bspdg (4515)

where as before

e p is the number of photons per unit volume per unit energy
e pde is the number of photons per unit volume
e P, is the probability for absorption per unit time

e R,.: is the absorptions per unit volume per unit time

Now consider the net rate upwards from 1 to 2 including stimulated emission

Rio s = Biapfi (1 — fa) (transition rate per unit volume)
Roq stim = B pr(l — f1) (transition rate per unit volume)

such that the net upwards rate is

R,ct = Ri2aps — R21 stim (transition rate per unit volume)
= Biapfi(l — fo) — Baipfo(1— fi)

Since we have already shown that Bis = By

Ry = Biaplfi(1 — f2) — fo(1— fi)] (45.16)

Equating the two expressions for p gives

Pupspde = Buizplfi(1 — f2) — f2(1— f1)]
Pusde = Bua[fi(1— fa) — fo(1 = f1)]

Here we relate P, to the absorption coefficient as follows

C
Pn,bs = —«
n

How? If P is the absolute probability for an absorption event and % = Pus
dP  dP (dz
dt dz \dt

C
Pabs = Oé(—)
n
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Insert this P, expression into the above equivalence to get

c
o (=) de = Bualfi(1— f2) = foll = )]
Rearrange this to solve for Big

E) de
n/ [fi(l— f2) = fo(1 = f1)]

Relate Bya to A using our derived Einstein A and B coefficients.

B12=a(

8mndv? 82 /n\3 c de
A = =5 Be== (Z) O‘(E) (L f2)— fol— f1)]
_ 8m? (2)2a de
~ h \c [fi(1 = f2) = fo(1 = f1)]

Now recall that

R21,spont = Af2(1 - f1)

such that

Roq ,spont = &

(n)2 fo(l - fi)de
11— f2) = fo(1 = £1)]
82 /ny2 de
( ) A=) 4
f2(1—f1)

Now for convenience define
T'spont (E)dg = R21

where r5poni(€) is the transition rate per unit volume per unit energy. By

inspection
_ 82 rny2 1
rspont(a) =« h (C) f1(1_f2) _ 1
f2(1—f1)
and
1
h = /==
e rr +1
1
fa = 9—cp

e kT +1
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We’ve solved the ratio in the denominator before giving

f1(1_f2) hy

—_— —= ekT

fa(1 = f1)

Putting everything together

Topont (€) = & <87Zj2> (%)2 (ez'?—f?—11>

If hv > KT the term in parenthesis ~ e~ %% and the main expression becomes

2 2 »
rsp(mt(s) =« <87Z/ > (E) 67271 (4517)

C

We can stop here or continue to express this as an intensity.

rspont (5)

IBD(S) =€ aemc(s)

where ou.,.(€) is the absorption coefficient at the particular excitation posi-
tion. This value is a constant.

Iin(e) = (hu)a(

aewc(s)
- @ 3y (M\2 _nv
= aem(STrl/ ) (c) e kT (45.18)

Finally, for a 3D material the absorption coefficient is proportional to the
joint density of states

axAye—¢g

where A is a constant. This leads to our final expression for the emission
spectrum

[ — 2 v
.A g Eg (87Tl/3) (2) e_]}:_T
Cc

a@fli(i

I;p =

h

Ig]j = A,,/é‘ — 6967’“

N

<

(45.19)
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Quantum yields and lifetimes

Here we discuss some complementary aspects to the emission. Imagine popu-
lating the excited state of the system and immediately (i.e. instantaneously)
turning off the light. Basically this is a pulsed experiment.

The depopulation of the excited state occurs by spontaneous emission
since stimulated emission only occurs in the presence of the excitation. The
relevant rate equation is

dNo
— =—-AN.
dt 2
orif A=k, .4
dNo
— = kN
dt radiV2
dNo
—= = —kpuqdt
Ny g
InNy = —kpqqt + (const)
Ny = Ce Fradt
At t =0 C = N»(0) resulting in
Na(t) = Np(0)e Fradt (45.20)
The decay will be exponential and 7 = k1 - is called the lifetime of the

excited state.

In general, however, since we don’t live in a perfect world, there are
other de-excitation pathways. These include energy transfer or non-radiative
decay through defect states. So in general the total decay rate out of the
excited state is the sum of all rates

kit = kpga + k1 + ko +ks+ ...
giving

dNo

7 = f(k,,ad+k1+k2+k3+...)N2

= - (krad+zki> N2

= _ktotNQ
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Only the k,,q pathway gives you emission. Therefore, the efficiency of
emission is called the quantum yield (QY') and is defined by

1

QY = brad op Inpd — Tior (45.21)

kiot Trot Trad
o

For most applications, one desires a QY that is as close to unity as possible
(QY = 1). For example, such applications could involve lasers, light emitting
diodes, fluorescent tags and so forth.



352 CHAPTER 45. EMISSION



Chapter 46

Relation to Einstein
Coefficients

Previously we had for a harmonic perturbation (monochromatic)

_ BJ| < klp|n > 2 sin?({nl)
- hz (wkn - W)Q

P,

where H(") = —i - € and

€ = Egécoswt
or

€ = FEyésinwt

Recall that it didn’t really matter which one we chose.
The average energy density in an electromagnetic field is

U =2(EP+|BP)

but we showed that ¢y| E|? = eoc?|B|?

€0
U=—(2EP) = e|E]
where E = Egécoswt or |E|? = Ejé?cos®wt but then again the average value
of cos?wt = 5. Therefore |E|?> = $ E3. We now have
1 GOEg

= e-FE2 =
U 602 5

353
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Solve for Eg to get

2U
Ef=—
0 €

and replace this into the above expression for the transition probability.

2 (Whn —w)t
Py = 25| < klpln > P —Z—

- 6077,2

(46.1)

Now this expression is for a monochromatic perturbation. Like we have
done many times in the past, we want an expression that accounts for a
broad spread of frequencies where p(wy)dw is the energy density (per unit
volume) and p(wy) is the energy density per unit frequency.

) e — W)l
2p(wy)dw o8t QMT‘“
p o= Pwr)aw, ST
k €0h2 | 12| | o w)2
2 * sin2 L =2)t
Prgrowp = —=| < kluz|n > 2/ P Wk —2dwk
sgroup eoh2| e | o (wr) (o —w)?
As before assume that p(wy) is constant or uniform.
2p(wy)| < klp|n > > [ sin? et
Pk group — > . dwk

) €Oh o (wkn _ L(J)

We have seen integrals like this before. Recall that

® ginZaz
dr = ma

2

—00

So therefore in our case by comparison to this

o0 sinQM t
T k=
J —o0 (wkn - w) 2
The transition probability then becomes
_ 2p(n)] < Hpeln > Pt
eoh’ 2

Pk,group

Pk,grml,p = %‘ < k|:uz|n > ‘Qt (462)
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de,g'r‘oup

Now let’s go for the transition rate. R = —=4

Ry = ") < ks |n > 2 (46.3)

This is the desired rate from Fermi’s Golden Rule and applies to both ab-
sorption and stimulated emission.

Since we took the z component in | < k|u,|n > |? we should angle average
this term

U, = pcost
W, = plcos®d

Angle average this

1 2T pm
= ul— / cos*0sinfdfde
4 0 0
2 ™
= ;L2—7r cos?0sinfde
47 0

1 s
= u—/ cos*0sinfd
2 Jo

Let x = cosf and then dx = —sinfdf. Also remember to change the limits
of integration.

|

|

=
| —
L

8

o
5

1 1
_ el

23|,

11 1
_ 2=/~ -
= 3G +3)
12
23
_

3

Therefore

< | < kpzn > 2 >= M (46.4)
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Now back to our transition probability

Pk,anglefavg = 7[—3’;2‘;5)‘ < k|/i‘n > |2 (465)

By inspection the Einstein B coefficient is

7| < kluln > |?

3€0h2 p(k)
Therefore
T n 2
Byg = —2_|<§!;;|1 = = By (46.6)

Now the relation between Einstein A and B coefficients will depend on
how you defined the Placnk distribution. Recall that different people or texts
do it slightly differently at times making things potentially very confusing.

We previously had

A=t8ip, (46.7)

C

We need to convert this into an expression with angular frequency w. This
expression can be rederived to get an expression with w

A= I (46.8)

23

into which we introduce our expression for B.

hwd \ 7| < klpln > |2
A = 5
m2e3 3eoh
W3 < Elpn > ?
3rcdegh

giving our desired expression for the Einstein A coefficient

A = bl (46.9)

3meghct
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