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1.  Introduction 

 
Fermi-Dirac integrals appear frequently in semiconductor problems, so a basic 

understanding of their properties is essential. The purpose of these notes is to collect in one 
place, some basic information about Fermi-Dirac integrals and their properties. We also present 
Matlab functions (see Appendix and [1]) that calculate Fermi-Dirac integrals (the “script F” 
defined by Dingle [2] and reviewed by Blakemore [3]) in three different ways.  

To see how they arise, consider computing the equilibrium electron concentration per unit 
volume in a three-dimensional (3D) semiconductor with a parabolic conduction band from the 
expression, 

 

 n = g(E) f0(E)dE =
g(E)dE
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where g(E)  is the density of states, f0(E)  is the Fermi function, and CE  is the conduction band 

edge. For 3D electrons with a parabolic band structure, 
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which can be used in Eq. (1) to write 
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By making the substitution,  
 
 ε = E − EC( ) kBT , (4) 

 
Eq. (3) becomes 
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where we have defined 
 
 ( )F F C BE E k Tη ≡ − . (6) 

 
By collecting up parameters, we can express the electron concentration as 
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where 
 

 
3/2*

3D 2

2
2 Bm k T

N
h

π 
=  

 
 (8) 

 
is the so-called effective density-of-states and  
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is the Fermi-Dirac integral of order 1/2. This integral can only be evaluated numerically. Note 
that its value depends on ηF , which measures the location of the Fermi level with respect to the 
conduction band edge. It is more convenient to define a related integral, 
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so that Eq. (7) can be written as 
 
 ( )3D 1/2 Fn N η= F . (11) 

 
It is important to recognize whether you are dealing with the “Roman” Fermi-Dirac integral or 
the “script” Fermi-Dirac integral. 

There are many kinds of Fermi-Dirac integrals. For example, in two dimensional (2D) 
semiconductors with a single parabolic band, the density-of-states is 
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and by following a procedure like that one we used in three dimensions, one can show that the 
electron density per unit area is 
 
 ( )2D 0S Fn N η= F , (13) 

 
where 
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is the Fermi-Dirac integral of order 0, which can be integrated analytically. 

Finally, in one-dimensional (1D) semiconductors with a parabolic band, the density-of-states 
is 
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and the equilibrium electron density per unit length is 
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where 
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and  
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is the Fermi-Dirac integral of order 1/ 2− , which must be integrated numerically. 
 
 
2.  General Definition 

 
In the previous section, we saw three examples of Fermi-Dirac integrals. More generally, we 

define 



4 
 

 
0

1
( )

( 1) 1 exp( )

j

j F
F

d

j

ε εη
ε η

∞

≡
Γ + + −∫F , (20) 

 
where Γ is the gamma function. The Γ function is just the factorial when its argument is a 
positive integer, 
 
 ( )( ) 1 ! (for  a positive integer)n n nΓ = − . (21a) 

 
Also 
 

 Γ(1 / 2)= π , (21b) 
 
and 
 
 Γ(p + 1) = pΓ(p) . (21c) 
 
As an example, let’s evaluate 1/ 2( )FηF from Eq. (20): 
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so we need to evaluate Γ(3 / 2). Using Eqs. (21b-c), we find, 
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so 1/ 2( )FηF  is evaluated as 
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which agrees with Eq. (10). For more practice, use the general definition, Eq. (20) and Eqs. (21a-
c) to show that the results for 0( )FηF  and 1/ 2( )Fη−F  agree with Eqs. (15) and (19). 

 
 
3.  Derivatives of Fermi-Dirac Integrals 
 

Fermi-Dirac integrals have the property that 
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which often comes in useful. For example, we have an analytical expression for0( )FηF , which 

means that we have an analytical expression for1( )Fη−F , 
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Similarly, we can show that there is an analytic expression for any Fermi-Dirac integral of 
integer order, j, for 2j ≤ − , 
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where kP  is a polynomial of degree k, and the coefficients ,k ip  are generated from a recurrence 

relation [4] (note that the relation in Eq. (26c) is missing in p. 222 of [4]) 
 
  ,0 1kp = , (26a) 

 
 ( ) ( ), 1, 1, 11 1 1, , 1k i k i k ip i p k i p i k− − −= + − + − = −… , (26b) 

 
 , 1, 1k k k kp p − −= − . (26c) 

 

For example, to evaluate ( ) ( ) ( )4

4 21F F F
F e e P eη η ηη− = + ×F , polynomial coefficients are 

generated from Eqs. (26a-c) as [4] 
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   2,0 2,1 1,1 1,0 2,2 1,11, 2 2 4, 1p p p p p p= = − = − = − = , 

 
and we find 
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4.  Asymptotic Expansions for Fermi-Dirac Integrals 
 

It is useful to examine Fermi-Dirac integrals in the non-degenerate (ηF << 0 ) and 
degenerate (ηF >> 0 ) limits. For the non-degenerate limit, the result is particularly simple, 
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 ( ) F
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which means that for all orders, j, the Fermi-Dirac integral approaches the exponential in the 
non-degenerate limit. To examine Fermi-Dirac integrals in the degenerate limit, we consider the 
complete expansion for the Fermi-Dirac integral for 1j > −  and 0Fη >  [2, 5, 6] 
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= − = −∑ , and ( )nζ  is the Riemann zeta function. 

The expressions for the Fermi-Dirac integrals in the degenerate limit (ηF >> 0 ) come from Eq. 

(30) as ( )1( ) 2j
j F F jη η +→ Γ +F  [7]. Specific results for several Fermi-Dirac integrals are shown 

below. 
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The complete expansion in Eq. (30) can be related to the well-known Sommerfeld expansion [8, 
9]. First, note that the integrals to calculate carrier densities in Eqs. (1) and (3) are all of the form  
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If ( )H E  does not vary rapidly in the range of a few Bk T  about FE , then we can write the 

Taylor expansion of ( )H E about FE  as [9] 
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Using this Taylor series expansion, the integral in Eq. (32) can be written as (see [9] for a 
detailed derivation) 
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and it is noted that 22n na t= . Equation (34) is known as the Sommerfeld expansion [8, 9]. 

Typically, the first term in the sum in Eq. (34) is all that is needed, and the result is  
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If we scale E  by Bk T  in Eq. (34), BE k Tε ≡ , then Eq. (34) becomes 
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Then the Sommerfeld expansion for the Fermi-Dirac integral of order j can be evaluated by 
letting ( ) ( )1jH jε ε= Γ +  in Eq. (37), and the result is 

 

 
( )

1 2
2

0

( ) 2
2 2

j n
j F F n

n F

t

j n
η η

η

∞
+

=

=
Γ + −∑F . (38) 

 
Equation (38) is the same as Eq. (30) except that the second term in Eq. (30) is omitted [5]. In 
the degenerate limit, however, the second term in Eq. (30) vanishes, so the Eqs. (30) and (38) 
give the same results as Eqs. (31a-e). 
 
 
5.  Approximate Expressions for Common Fermi-Dirac Integrals 
 

Fermi-Dirac integrals can be quickly evaluated by tabulation [2, 7, 10, 11] or analytic 
approximation [12-14]. We briefly mention some of the analytic approximations and refer the 
reader to a Matlab function. Bednarczyk et al. [12] proposed a single analytic approximation that 
evaluates the Fermi-Dirac integral of order 1/ 2j =  with errors less than 0.4 % [3]. Aymerich-
Humet et al. [13, 14] introduced an analytic approximation for a general j, and it gives an error 
of 1.2 % for 1/ 2 1/ 2j− < <  and 0.7 % for 1/ 2 5/ 2j< < , and the error increases with larger j. 
The Matlab fuction, “FD_int_approx.m,” [1] calculates the Fermi-Dirac integral defined in Eq. 
(10) with orders 1/ 2j ≥ −  using these analytic approximations. The source code of this 
relatively short function is listed in the Appendix. 
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If a better accuracy is required and a longer CPU time is allowed, then the approximations 
proposed by Halen and Pulfrey [15, 16] may be used. In this model, several approximate 
expressions are introduced based on the series expansion in Eq. (30), and the error is less than 
10-5 for 1/ 2 7 / 2j− ≤ ≤  [15]. The Matlab function, “FDjx.m,” [1] is the main function that 
calculates the Fermi-Dirac integrals using this model. This function includes tables of 
coefficients, so it is not simple enough to be shown in the Appendix, but it can be downloaded 
from [1]. 

There also have been discussions on the simple analytic calculation of the inverse Fermi-
Dirac integrals of order 1/ 2j =  [3]. This has been of particular interest because it can be used to 

calculate the Fermi level from the known bulk charge density in Eq. (11), as ( )1
1/ 2 3F Dn Nη −=F . 

Joyce and Dixon [17] examined a series approach that gives 0.01Fη∆ ≤  for max 5.5Fη ≃  [3], 

and a simpler expression from Joyce [18] gives 0.03Fη∆ ≤  for max 5Fη ≃  [3]. Nilsson proposed 

two different full-range ( 10 20Fη− ≤ ≤ ) expressions [19] with 0.01Fη∆ ≤  and 0.005Fη∆ ≤  

[3]. Nilsson later presented two empirical approximations [20] that give 0.01Fη∆ ≤  for 

max 5.5Fη ≃  and max 20Fη ≃ , respectively [3]. 

 
 
6.  Numerical Evaluation of Fermi-Dirac Integrals 
 

Fermi-Dirac integrals can be evaluated accurately by numerical integration. Here we briefly 
review the approach by Press et al. for generalized Fermi-Dirac integrals with order 1j > −  [21]. 

In this approach, the composite trapezoidal rule with variable transformation ( )exp tt eε −= −  is 

used for 15Fη ≤ , and the double exponential (DE) rule is used for larger Fη . Double precision 

(eps, 16~ 2.2 10−× ) can be achieved after 60 to 500 iterations [21]. The Matlab function, 
“FD_int_num.m,” [1] evaluates the Fermi-Dirac integral numerically using the composite 
trapezoidal rule following the approach in [21]. The source code is listed in the Appendix. This 
approach provides very high accuracy, but the CPU time is considerably longer. An online 
simulation tool that calculates the Fermi-Dirac integrals using this source code has been 
deployed at nanoHUB.org [22]. Note that the numerical approach we consider in this note is 
relatively simple, and there are other advanced numerical integration algorithms [23] suggested 
to improve the calculation speed. 

In Fig. 1, we compare the accuracy and the timing of the three approaches that calculate 

( )j FηF . The Fermi-Dirac integral of order 1 2j =  ( ( )1/ 2 FηF ) is calculated for 10 10Fη− ≤ ≤  

with Fη  spacing = 0.01 using approximate expressions (“FD_int_approx.m” and “FDjx.m”) and 

the rigorous numerical integration (“FD_int_num.m”) with double-precision. The relative errors 

of the approximate expressions are calculated as ( )1/2, 1/ 2, 1/2,approx num num−F F F , where 1/2,approxF  

and 1/ 2,numF  represent the results from the approximate expression and the numerical integration 

respectively. The elapsed time measured for each approach (using Matlab commands “tic/toc” 
for Pentium 4 CPU 3.4 GHz and 2.0 GB RAM) clearly shows the compromise between the 
accuracy and the CPU time.  
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Fig. 1. (a) Relative errors from the approximate expressions for ( )1/ 2 FηF  with respect to the 

numerical integration (“FD_int_num.m”). (A) Relative error from “FD_int_approx.m”. (B) 
Relative error from “FDjx.m”. All Matlab functions are available in [1].(b) The absolute values 
of the relative errors in the log scale. The elapsed time measured for the three approaches clearly 
shows the trade-off between the accuracy and the CPU time.  
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Appendix 
 
“FD_int_approx.m” 
 
function y = FD_int_approx( eta, j ) 
 
% Analytic approximations for Fermi-Dirac integrals of order j > -1/2 
% Date: September 29, 2008 
% Author: Raseong Kim (Purdue University) 
% 
% Inputs 
% eta: eta_F 
% j: FD integral order 
% 
% Outputs 
% y: value of FD integral (the "script F" defined by Blakemore (1982)) 
% 
% For more information in Fermi-Dirac integrals, see: 
% "Notes on Fermi-Dirac Integrals (3rd Edition)" by Raseong Kim and Mark 
% Lundstrom at http://nanohub.org/resources/5475 
%  
% References 
% [1]D. Bednarczyk and J. Bednarczyk, Phys. Lett. A, 64, 409 (1978) 
% [2]J. S. Blakemore, Solid-St. Electron, 25, 1067 (1982) 
% [3]X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, Solid-St. Electron, 24, 981 (1981) 
% [4]X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, J. Appl. Phys., 54, 2850 (1983) 
 
if j < -1/2 
    error( 'The order should be equal to or larger than -1/2.') 
else 
    x = eta; 
    switch j 
        case 0 
            y = log( 1 + exp( x ) );        % analytic expression 
             
        case 1/2 
            % Model proposed in [1] 
            % Expressions from eqs. (22)-(24) of [2] 
            mu = x .^ 4 + 50 + 33.6 * x .* ( 1 - 0.68 * exp( -0.17 * ( x + 1 ) .^ 2 ) ); 
            xi = 3 * sqrt( pi ) ./ ( 4 * mu .^ ( 3 / 8 ) ); 
            y = ( exp( - x ) + xi ) .^ -1; 
         
        case 3/2 
            % Model proposed in [3] 
            % Expressions from eq. (5) of [3] 
            % The integral is divided by gamma( j + 1 ) to make it consistent with [1] and [2]. 
            a = 14.9; 
            b = 2.64; 
            c = 9 / 4; 
            y = ( ( j + 1 ) * 2 ^ ( j + 1 ) ./ ( b + x + ( abs( x - b ) .^ c + a ) .^ ( 1 / c ) ) .^ ( j + 1 ) ... 
            + exp( -x ) ./ gamma( j + 1 ) ) .^ -1 ./ gamma( j + 1 ); 
             
        otherwise 
            % Model proposed in [4] 
            % Expressions from eqs. (6)-(7) of [4] 
            % The integral is divided by gamma( j + 1 ) to make it consistent with [1] and [2]. 
            a = ( 1 + 15 / 4 * ( j + 1 ) + 1 / 40 * ( j + 1 ) ^ 2 ) ^ ( 1 / 2 ); 
            b = 1.8 + 0.61 * j; 
            c = 2 + ( 2 - sqrt( 2 ) ) * 2 ^ ( - j ); 
            y = ( ( j + 1 ) * 2 ^ ( j + 1 ) ./ ( b + x + ( abs( x - b ) .^ c + a ^ c ) .^ ( 1 / c ) ) .^ ( j + 1 ) ... 
                + exp( -x ) ./ gamma( j + 1 ) ) .^ -1 ./ gamma( j + 1 ); 
    end 
end 
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“FD_int_num.m” 
 
function [ y N err ] = FD_int_num( eta, j, tol, Nmax ) 
 
% Numerical integration of Fermi-Dirac integrals for order j > -1. 
% Author: Raseong Kim (Purdue University) 
% Date: September 29, 208 
% Extended (composite) trapezoidal quadrature rule with variable 
% transformation, x = exp( t - exp( t ) ) 
% Valid for eta ~< 15 with precision ~eps with 60~500 evaluations. 
% 
% Inputs 
% eta: eta_F 
% j: FD integral order 
% tol: tolerance 
% Nmax: number of iterations limit 
% 
% Note: When "eta" is an array, this function should be executed 
% repeatedly for each component. 
% 
% Outputs 
% y: value of FD integral (the "script F" defined by Blakemore (1982)) 
% N: number of iterations 
% err: error 
% 
% For more information in Fermi-Dirac integrals, see: 
% "Notes on Fermi-Dirac Integrals (3rd Edition)" by Raseong Kim and Mark 
% Lundstrom at http://nanohub.org/resources/5475 
% 
% Reference 
% [1] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 
% Numerical recipies: The art of scientific computing, 3rd Ed., Cambridge 
% University Press, 2007. 
 
for N = 1 : Nmax 
    a = -4.5;                       % limits for t 
    b = 5.0; 
    t = linspace( a, b, N + 1 );    % generate intervals 
    x = exp( t - exp( -t ) ); 
    f = x .* ( 1 + exp( -t ) ) .* x .^ j ./ ( 1+ exp( x - eta ) ); 
    y = trapz( t, f ); 
     
    if N > 1                        % test for convergence 
        err = abs( y - y_old ); 
        if err < tol 
            break; 
        end 
    end 
     
    y_old = y; 
end 
 
if N == Nmax 
    error( 'Increase the maximum number of iterations.') 
end 
 
y = y ./ gamma( j + 1 ); 


