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MRI Instrumentation and 
Pulse Sequences

Yao Wang

Polytechnic University, Brooklyn, NY 11201

Based on J. L. Prince and J. M. Links, Medical Imaging Signals and 

Systems, and lecture notes by Prince. Figures are from the textbook 

except otherwise noted.
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Lecture Outline

• Review of MRI physics and imaging principle

• MRI instrumentation

– Magnet, gradient coil, RF coil

• Pulse sequences for slice selection and position 

encoding

– Slice selection

– Rectilinear scanning

– Polar scanning

• Pulse parameter selection for T1,T2,PD weighting
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Summary: Process Involved in MRI

• Put patient in a static field B_0 in z-direction

• (step 1) Wait until the bulk magnetization M reaches an equilibrium (M align 
with B_0)

• Apply a rotating field (alpha pulse) B_1 in the xy plane to bring M to an initial 
angle \alpha with B_0. Typically \alpha=\pi/2

• M precesses around B_0 (z direction) at Larmor freq. with angle \alpha 

• The component in z increases in time (longitudinal relaxation) with time 
constant T1

• The component in x-y plane reduces in time (transverse relaxation) with 
time constant T2

• Apply \pi pulse to induce echos to bring transverse components in phase to 
increase signal strength

• Measure the transverse component at different times (NMR signal) (typically 
at echo time)

• Go back to step 1

• By using different excitation pulse sequences (differing in TE, TR, \alpha), 
the signal amplitude can reflect mainly the proton density, T1 or T2 at a 
given voxel
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Unanswered Question

• How to measure the signal at one particular location? 

– Using gradient coils to yield a static field which changes in 

location (B_0(x,y.z)) and hence the Larmor freq. changes in x,y,z

– Apply RF pulses in a certain range so that only a certain voxels

are excited or measured

• Actually measure samples of the Fourier transform of a 

slice

– Need reconstruction
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MRI Scanner Components
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Image of a Practical MRI Machine
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How to generate Magnetic field?

• From a current loop

• From a straight wire with current
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Magnetic Field of a Current Loop
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Decrease with distance (1/z^3)

From http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
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Magnetic Field of a Current Wire
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From: http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
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Magnet for Static Field B_0

• Demands:
– Spatially homogeneous field

– Stable over time

– Strong field

– Patient access (volume)

• Permanent magnet:
– < 3% of all magnets

– < 0.3 T

– Economic, open

– Small fringe field

• Resistive magnet
– Using a current loop through a metal wire

– ~ 50 kW, needs cooling water

– Heat constrains maximum current -> 0.15 - 0.3 T
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Superconducting magnet

• Superconducting magnet:
– Using a superconductive Niobium/Titanium alloy (Type II, 1950) to carry 

current, supports high magnetic field strengths

– Superconducting wire has a resistance approximately equal to zero 
when it is cooled to a temperature close to absolute zero (-273.15o C or 
0 K) by immersing it in liquid helium. Once current is caused to flow in 
the coil it will continue to flow as long as the coil is kept at liquid helium 
temperatures.

– Once current is caused to flow in the coil it will continue to flow as long 
as the coil is kept at liquid helium temperatures. 

– 200 A / 1-10 T (1.5 T most common)

– Decay 0.05 ppm/hour → years of operation
– Bore in 1 meter, length 2.6-2.8 m

• Tradeoffs:
– High field strength → reduced T1 contrast
– Reduced RF penetration due to higher frequencies

– Cost

– Safety: 5-G line (~ 10-12 m from unshielded 1.5 T-magnet)
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Superconducting Magnet

Liquid Nitrogen

Liquid Helium

The length of superconducting wire in the magnet is typically several miles. The coil of wire is kept at a temperature of 

4.2K by immersing it in liquid helium. The coil and liquid helium is kept in a large dewar. The typical volume of liquid 

Helium in an MRI magnet is 1700 liters. This dewar is surrounded by a liquid nitrogen (77.4K) dewar which acts as a 

thermal buffer between the room temperature (293K) and the liquid helium.
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Magnet Specification
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Gradient Coils
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Z-Gradient 

antihelmholtz coil

http://www.cis.rit.edu/htbooks/mri

Graber, lecture note for BMI F05
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X- and Y-Gradient

X

Y

Saddle coil
http://www.cis.rit.edu/htbooks/mri

Graber, lecture note for BMI F05
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Specification of Gradient Coils
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RF Coils

• RF coils create the B1 field which rotates the net 
magnetization in a pulse sequence. (transmission mode)

• They also detect the transverse magnetization as it 
precesses in the XY plane. (receive mode)

• Three general categories; 1) transmit and receive coils, 
2) receive only coils, and 3) transmit only coils. Near-
field antennas

• Coils are resonant circuits, tuned w/ capacitors for 
efficient transmitting and receiving at Larmor frequency 
(improved SNR)
– w0=1/sqrt(LC)

• Safety: limit absorbed power to prevent heating in 
excess of 1°C
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RF transmitter and receiver

• Specific waveforms (truncated sinc pulse) are achieved by digital 

waveform memory (Bandwidth of slice selection ~ 20 kHz)

• Carrier from RF synthesizer modulated by waveform

• Power amp (~ 10 kW) 

• Receiving preamp (100 kHz), detector, data acquisition, storage

RF 

synthesizer

Modulator

Waveform

memory

Power

amp 

(~10 kW)

DetectorPreamp
Data

acquis.
Coupler

transmit receive
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How does RF Coil Generate Rotating 
Magnetic Field

• The two counter rotating magnetic fields in x-y plane 

produces a Sinusoidal Field in x-direction with the freq = 
the rotation frequency (=Larmor freq.)

• An RF coil generates a sinusoidal field in x-direction
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Desired Rotating Magnetic Fields
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From Graber, lecture note for BME F05
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Resulting Magnetic Field in x-Direction

Simplified bird’s-eye view of counter-rotating magnetic field vectors

t = 0     1/(8f0)               1/(4f0)               3/(8f0)     1/(2f0)    5/(8f0)                3/(4f0)               7/(8f0)        1/f0

So what does resulting B vs. t look like?

This time-dependent field is called B1. 
From Graber, lecture note for BME F05

Yao Wang, NYU-Poly EL5823/BE6203: MRI Instrumentation 24

From Graber, lecture note for BME F05
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Types of RF Coils

• Coil types

– Homogeneous field coils (Head, whole body)

• Birdcage

• Saddle

– Surface coils (local anatomy, e.g. spine), often receive-only coils

– Different coils may be used to imaging different body parts

• Operate at frequencies in the range of ~1-170 MHz
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Different Types of RF Coils

• See http://www.cis.rit.edu/htbooks/mri/inside.htm (chap 

9: imaging hardware) 
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http://www.cis.rit.edu/htbooks/mri/inside.htm
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http://www.cis.rit.edu/htbooks/mri/inside.htm
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Laboratory Coordinate
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Larmor Frequency Encoding
Using Gradient Fields
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Slice Selection Using Z-Gradient
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Slice Excitation
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Slice Selection Parameters
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“Ideal” RF Excitation Pulse

Tip angle is
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Derivation of Tip Angle

• Excitation is at freq. w0, denoted by 

• Recall that tip angle is related to B_1^e(t) by

• When the spin Larmor freq. w is not the same as the excitation w0, we 

need to replace B_1^e(t) by

• The Larmor freq. at z is 

• Show on the board:

• Note that \alpha(z) has the same profile as S(v). The slice thickness 

can be translated from S(v) bandwdith using
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Practical RF Excitation Pulse
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Slice Dephasing and Refocusing

Why \tau_p/2?

Spins start to precess coherently roughly at \tau_p/2
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A Simple Pulse Sequence

Slice selection

refocusing

transmit receive
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Basic Signal Model

• The transverse magnetic field M_xy at all voxels in a slice induces a 

voltage signal (FID) in the surrounding RF coil (receive mode) 

• FID depends on the integration of the magnetic field over all voxels

• M_xy follows transverse relaxation after excitation:
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Demodulation of the Received Signal
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Locating a Voxel in a Slice

• The FID gives the sum of signals from all voxels in a slice

• How do we separate contributions from different voxels?

• Apply x- and y-direction gradient fields so that voxels in different x,y

positions have different Larmor freq. 

• Instead of scanning the spatial position (x,y), scan in 2D frequency space 

(u,x)

– Polar scanning

– Rectilinear scanning 
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X-Position Encoding 
(frequency encoding)

• Apply a Gx field over a certain time period Ts, measure the signal during 

this time (ADC window)

Question: can we apply the Gx gradient with the z-gradient simultaneously?
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Signal Model
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Relation to 2D FT

• Recall 2D FT:

• Our baseband signal: 
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Polar Scanning

Repeat above pulses after the magnetization returns to equilibrium.

In each new cycle, change Gx,Gy to scan a different angle

x

y

G

G
1tan−=θ
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Rectilinear Scanning

• Need to move u to negative axis (gradient echo)

• Need to vary v position in different cycles (phase 
encoding)
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Gradient Echo 

• Moving u to negative starting point
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Phase Encoding Sequence

• Moving scan to a different line  (v) through Y-gradient
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Gradient Echo Pulse Sequence

MR signal
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Phase encode signal model
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Spin Echo Measurement

• Previous pulse sequences are used to measure the FID, 

not the spin echo. 

• The signal experiences T2^* decay

• To measure spin echo (which follows T2 decay), need to 

apply inverse pulse before measurement



27

Yao Wang, NYU-Poly EL5823/BE6203: MRI Instrumentation 53

• See animation at 

• http://www.cis.rit.edu/htbooks/mri/inside.htm

• Chap 7, section on FT tomographic imaging 

Yao Wang, NYU-Poly EL5823/BE6203: MRI Instrumentation 54

Spin Echo (review)
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Spin-Echo Sequence
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Pulse Repetition

• To scan different lines  in the frequency space, we need 

to repeat the previous steps with a different Gy
(rectilinear scan) or different Gx,Gy pair (polar scan)

• But we should wait a period 

– Slow imaging sequence

• T_R>> T_2

• (M_xy has completely disappeared before the next RF pulse)

– Fast imaging sequence

• Use multiple spin echos after a single RF excitation

• Spoiling Mxy prior subsequent excitation

– By appling a z-gradient field, dephase spins in the selected slice so that 
spins added over the entire slice add destructively and hence no MR 
signal will be produced until the next excitation
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Realistic Gradient Echo Pulse Sequence

Spoiler gradient

Varying Gy in each cycle
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Realistic Spin Echo Pulse Sequence
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Realistic Spin-Echo Polar Pulse 
Sequence
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Steady State Response
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T1,T2,PD Weighting - Revisit

• Different tissues vary in T1, T2 and PD (proton density)

• The pulse sequence parameters can be designed so that 
the captured signal magnitude is mainly influenced by 

one of these parameters

• Pulse sequence parameters

– Tip angle  \alpha

– Echo time T_E

– Pulse repetition time T_R
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PD weighted
T2- weighted T1- weighted

White matter

Gray matter

CSF
26502801.00CSF

760770.69Gray 
matter

510670.61White 

matter

T_1 (ms)T_2 (ms)P_D
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T1-weighting

• Short TR:

– Maximizes T1 contrast due to different 

degrees of saturation

– If TR too long, tissues with different T1 

all return equilibrium already

• Short TE:

– Minimizes T2 influence, maximizes 

signal
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Note that we measure only M_xy, 

but TR influences the starting 

position of M_xy (initial position of 

T2 relaxation)
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T1

T2

Spin density weighting

• Signal proportional to PD

• Long TR:

– Minimizes effects of different degrees 
of saturation (T1 contrast)

– Maximizes signal (all return to 

equilibrium) 

• Short TE:

– Minimizes T2 contrast

– Maximizes signal
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T1

T2

T2 weighting

• Long TR:

– Minimizes influence of different T1

• Long TE:

– Maximizes T2 contrast

– Relatively poor SNR
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Example

• Example 13.9

• Suppose two tissues have same PD, T2, but different 
T1. How should you choose TR to maximizes the 

contrast between the two tissue in the recovered 

effective spin image. Assuming \alpha=pi/2 and we 

measure at TE using a spin echo pulse sequence.

• Go through on the board
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Summary

• Design and functions of magnets, gradient coils and RF coils

• RF and gradient pulse sequences

• Slice selection using z-gradient

• Scanning in frequency domain in one slice

– Rectilinear scan: 

– Polar scan: 

– FID measurement (using gradient echo sequence), follows T2* decay

– Spin echo measurement (using spin echo sequence), measure at echo time, 
follows T2 decay

– Should understand the purpose of each pulse in a given pulse sequence
• Understand the relation between the pulse sequence and the trajectory on the 

frequency domain!

– Difference between ideal and practical pulse sequences

• Should know relation between f(x,y) and s0(t) for different pulse sequences

– Basis for image formation and reconstruction

• Relation between f(x,y) and the tissue properties (MR imaging equation)

– How to vary pulse sequence parameters to weight T1, T2, PD contrast
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Reference
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• http://www.cis.rit.edu/htbooks/mri/inside.htm
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Homework 

• Reading: 

– Prince and Links, Medical Imaging Signals and Systems, Chap. 13 

(sec. 13.1-13.3) 

– Note down all the corrections for Ch. 13 on your copy of the 

textbook based on the errata (see Course website or book website

for update).

• Problems:

– P13.2

– P13.3

– P13.4 (except part (d))

– P13.12

– P13.13


