Speaking UNIX, Part 9: Regular expressions http://www.ibm.com/developerworks/aix/library/au-speak...

Speaking UNIX, Part 9: Regular expressions

Find and manipulate text

Level: Intermediate

Martin Streicher (martin.streicher@gmail.com), Chief Technology Officer, McClatchy Interactive

17 Apr 2007

Virtually all non-trivial problems require you to filter good data from bad. Discover the many
UNIX® command line utilities that use regular expressions to discern the relevant from the irrelevant.

Oddly enough, to this day, I can still repeat the Saturday morning classic "Conjunction Junction." Whether that's
bad (way too much television) or good (perhaps a harbinger of my current career) is open for debate. Regardless,
the little ditty conveyed foundational information in a happy little package.

I haven't come up with a "Conjunction Junction" equivalent for learning UNIX, but I'll try my hand at writing
such a song in the coming months. In the meantime, and inspired by my happy memories, let's continue
conquering the command line in the tradition of Schoolhouse Rock.

Class is now in session. Spit out your gum, take your seat, and find a No. 2 pencil. You, too, Mr. Spicoli.

See Dick type. See Jane compute.
You can think of a UNIX command line as a sentence:

® An executable, such as cat or Is, is a verb -- an action.

® The output of a command is a noun -- data to be perused or used.

® A shell operator, such as | (pipe) or > (redirect standard output), is a conjunction -- a connector to link
clauses.

For example, the command line: Ls -A | wc -1, which counts the number of entries in the current directory
(ignoring the special entries . and . .), has two clauses. The first clause, LS -A, is a verb and enumerates the
contents of the current directory; the second clause, WC -1, is another verb to count lines. The first produces
output; the second consumes it, and a conjunction -- the pipe -- connects the two.

Many of the command line recipes shown previously in this series and others that you've likely cooked up have
this sentence structure.

But without some grammatical gravy, the command line is as exciting as "See Dick type. See Jane compute."
Sure, a primer sentence gets the job done, but it ain't Hamlet. (My apologies to Mrs. Rad and Mrs. Perlstein, the
dynamic duo of senior-year English.) Solving more colorful problems requires adjectives.

Virtually all non-trivial problems require you to filter good data from bad. The number and kind of attributes
might vary but, in some way, shape, or form, each solution (implicitly or explicitly) describes the information it
seeks and processes that information, yielding more information in yet another form.

On the command line, the regular expression acts as an adjective -- a description or qualifier. When applied to
output, the regular expression discerns between relevant data and craft.

A little lesson in punctuation
Let's look at a sample problem.

The grep utility filters input line by line and looks for matches. In its simplest use, grep prints those lines that
contain text that matches a pattern. grep can find fixed sequences of characters and can even ignore case with

10of9 03/27/2009 04:35 PM

Speaking UNIX, Part 9: Regular expressions

20f9

the - 1 option.

Hence, given a file, heroes.txt, with these lines:

Catwoman
Batman

The Tick
Spider Man
Black Cat
Batgirl
Danger Girl
Wonder Woman
Luke Cage
The Punisher
Ant Man

Dead Girl
Aquaman

SCUD

Spider Woman
Blackbolt
Martian Manhunter

The command line:

grep -i man heroes.txt

produces:

Catwoman

Batman

Spider Man

Wonder Woman

Ant Man

Aquaman

Martian Manhunter

http://www.ibm.com/developerworks/aix/library/au-speak...

Here, grep scans each line in the heroes.txt file and looks for an m, followed by an a, and then followed by an
n. Except for being contiguous, those letters can appear anywhere on the line, even embedded in a larger word.
Catwoman, Batman, Spider Man, Wonder Woman, Ant Man, Aquaman, and Martian Manhunter each contain the

string man, ignoring case (the - 1 option).

The grep utility has other built-in options to refine searches. For instance, the -w option restricts matches to
whole words, so grep -i -w man would exclude Catwoman and Batman, for instance.

The tool also has a nice feature to exclude rather than include all matches found. Use the -V option to omit lines

that match. For instance:

grep -v -1 'spider'

heroes.txt

prints every line except those that contain the string spider:

Catwoman
Batman

The Tick
Black Cat
Batgirl
Danger Girl
Wonder Woman
Luke Cage
The Punisher
Ant Man

Dead Girl
Aquaman

SCUD
Blackbolt
Martian Manhunter

03/27/2009 04:35 PM

Speaking UNIX, Part 9: Regular expressions http://www.ibm.com/developerworks/aix/library/au-speak...

But, what if you want only those names that begin with "Bat"? Or words that begin "bat," "Bat," "cat," or "Cat?" Or
perhaps you want to find how many comic avengers end with "man." In these cases, a simple string search, as
performed in the previous three examples, doesn't suffice because the searches are insensitive to location.

Location, location, location, and alternation

A regular expression can filter for a specific location, such as the start or end of a line and the beginning and end
of a word. A regular expression, commonly abbreviated regex, can also describe alternates (which you might
describe as "this" or "that"); fixed-, variable-, or indefinite-length repetition; ranges (for example, "any of the
letters from a-m"); and classes, or kinds of characters ("printable characters" or "punctuation"), and other
techniques.

Table 1 shows some common regular expression operators. You can string together the primitives in Table 1 (and
other operators) and use them in combination to build (very) complex regular expressions.

Table 1. Common regular expression operators

Operator Purpose
. (period) Match any single character.
~ (caret) Match the empty string that occurs at the beginning of a line or string.

$ (dollar sign) Match the empty string that occurs at the end of a line.

A Match an uppercase letter 4.

a Match a lowercase a.

\d Match any single digit.

\D Match any single non-digit character.

\w Match any single alphanumeric character; a synonym is [:alnum:].
[A-E] Match any of uppercase 4, B, C, D, or E.

[*A-E] Match any character except uppercase 4, B, C, D, or E.

X? Match no or one occurrence of the capital letter X.

X* Match zero or more capital Xs.

X+ Match one or more capital Xs.

X{n} Match exactly » capital Xs.

X{n,m} Match at least » and no more than m capital Xs. If you omit m, the expression

tries to match at least n Xs.

(abc|def)+ Match a sequence of at least one abc and def; abc and def would match.

Here are a few examples of regular expressions using grep as the search tool. Many other UNIX tools, including
interactive editors Vi and Emacs, stream editors Sed and awk, and all modern programming languages, also
support regular expressions. Once you learn the (admittedly cryptic) syntax of regular expressions, you can
transfer your expertise among tools, programming languages, and operating systems.

Find names that begin with "Bat"

To find names that begin with "Bat," use:

grep -E '~Bat'

30f9 03/27/2009 04:35 PM

Speaking UNIX, Part 9: Regular expressions http://www.ibm.com/developerworks/aix/library/au-speak...

You use the - E option to specify the regular expression. The ™ (caret) character matches the beginning of a line

or a string -- an imaginary character that appears before the first character of each line or string. The letters B, a,

and t are literals and only match those specific characters. Hence, the command grep -E '”~Bat' produces:
Batman

Batgirl

Because many regex operators are also used by the shell (some for different purposes and some for similar
purposes), it's a good habit to surround each regex provided on the command line with single quotation marks to
protect the regex operators from interpolation by the shell. For example, both * (asterisk) and $ (dollar sign) are
regex operators and also have special meaning to your shell.

Find names that end with "man"

To find names that end with "man," you might use the regex man$ to match the sequence m, a, and n followed
immediately by the end of the line (or string) matched by the regex operator $.

Find a blank line

Given the purpose of ™ and $, you can find a blank line using the regex ~$ -- essentially, a line that ends
immediately after it begins.

Alternation or the set operator

To find words that begin with "bat," "Bat," "cat," or "Cat," you can use one of two techniques. The first is
alternation, which yields a match if any of the patterns in the alternation match. For example, the command:

grep -E '“(bat|Bat|cat|Cat)"' heroes.txt

does the trick. The regex operator | (vertical bar) is the alternation, so this | that matches either the string
this or the string that. Hence, ~(bat|Bat|cat|Cat) specifies, "The beginning of a line followed
immediately by one of bat, Bat, cat, or Cat." Of course, you could simplify the regex using grep -1i,
which ignores case, reducing the command to:

grep -i -E '“(bat|cat)' heroes.txt

nn

The other approach to matching "bat," "Bat," "cat," or "Cat" uses the [] (brackets) set operator. If you place a
list of characters in a set, any of those characters can match. (You can think of a set as shorthand for alternation
of characters.)

For example, the command line:

grep -E '“[bcBC]at' heroes.txt

produces the same result as the command:

grep -E '“(bat|Bat|cat|Cat)' heroes.txt

You can simplify once again with - 1 to reduce the regex to ~[bc]at.

Further, you can specify an inclusive range of characters in a set with the - (hyphen) operator. For instance, user
names typically begin with a letter. To validate such a user name, say, in a Web form submitted to your server,
you might use a regex such as “[A-Za-z]. This regex reads, "The start of a string followed immediately by any
uppercase letter (4-Z) or any lowercase letter (a-z)." By the way, [A-2z] is the same as [A-Za-z].

You can also mix ranges and individual characters in a set. The regex [A-MXYZ] would match any of uppercase

4 of 9 03/27/2009 04:35 PM

Speaking UNIX, Part 9: Regular expressions http://www.ibm.com/developerworks/aix/library/au-speak...

50f9

A-M, X, Y, and Z.

And if you want the inverse of a set -- that is, any character except what's in the set -- use the special set [~]
and include the range or characters to exclude. Here's an example of an inverse set. To find all superheroes with
at in the name, excluding the Dark Knight, Batman, type:

grep -i -E '[“b]at' heroes.txt

The command produces:

Catwoman
Black Cat

Certain sets are required so frequently that shorthand notation has been developed to stand in for many. For
instance, the set [A-z0-9] is so common that it can be abbreviated \Ww. Likewise, the operator \W is a
convenience for the set [*A-z0-9]. You can also use the notation [:alnum:] instead of \w and
[“[:alnum:]] for \W.

By the way, \W (and synonym [:alnum:]) are specific to locale, while [A-z0-9] is literally the letters A-z,
the digits 0-9, and the underscore. If you're developing international applications, use the locale-specific forms to
make your code portable among many locales.

Repeat after me: Repetition, repetition, repetition

So far, you've seen literal, positional, and two kinds of alternation operators. With these alone, you can match
most any pattern of a predictable length. Returning to user names, for example, you could ensure that every user
name started with a letter and was followed by exactly seven letters or numbers through the regex:

[a-z][a-z0-9][a-z0-9][a-z0-9][a-2z0-9][a-z0-9][a-2z0-9][a-20-9]

But that's a little unwieldy. Moreover, it only matches user names of exactly eight characters. It won't match
names between three and eight characters, which are also typical valid user names.

A regular expression can also include repetition modifiers. A repetition modifier can specify amounts such as
none, one, or more; one or more; zero or one; five to ten; and exactly three. A repetition modifier must be
combined with other patterns; the modifier has no meaning by itself.

As an example, the regex:

N[A-z][A-2z0-91{2,7}%

implements the user name filter desired earlier. A user name is a string beginning with a letter followed by at least
two, but not more than seven letters or numbers followed by the end of the string.

The location anchors are essential here. Without the two positional operators, user names of arbitrary length
would erroneously be accepted. Why? Consider the regex:

A"A-z][A-2z0-91{2,7}

It asks the question, "Does the string begin with a letter followed by two to seven letters?" But it makes no
mention of the terminating condition. Thus, the string samuelclemens fits the criteria, but it is obviously too
long for a valid user name. Similarly, omitting the beginning anchor, ~, or both anchors would match strings that
ended or contained something like munsterl313, respectively. If your match must be a specific length, don't
forget to include delimiters for the beginning and end of the desired pattern.

Here are a few other samples:

03/27/2009 04:35 PM

Speaking UNIX, Part 9: Regular expressions http://www.ibm.com/developerworks/aix/library/au-speak...

® You can use {2, } to find two or more repeats. The regex “G[0]{2, }gle matches Google,
Gooogle, Goooogle, and so on.

® The repetition modifiers ?, +, and * find no or one, one or more, and zero or more repeats, respectively.
(You can think of ? as a shorthand for {0, 1}, for instance.)

The regex boys? matches boy or boys; the regex Goo?gle matches Gogle or Google.
The regex Goo+gle matches Google, Gooogle, Goooogle, and so on.

The construct Goo*gle matches Gogle, Google, Gooogle, and so on.

® You can apply repetition modifiers to individual literals, as shown immediately above, as well as to other,
more complex combinations. Use (and) parentheses (just as you do in mathematics) to apply a modifier
to a subexpression. Here's an example: Given text file test.txt:

The rain in Spain falls mainly
on the the plain.

It was the best of of times;
it was the worst of times.

the command grep -i -E '(\b(of]|the)\W+){2,}"' test.txt produces:
on the the plain.

It was the best of of times;

® The regex operator \b matches a word boundary or (\W\w | \W\W). The regex reads, "A sequence of
whole words 'the' or 'of' followed by a non-word character." You might be asking why the \W+ is
necessary: \b is the empty string at the beginning or end of a word. You have to include the character or
characters between the words, otherwise the regex fails to find a match.

Capture what needs your attention

Finding text is a common problem but, more often than not, you want to extract the text after it's found. In other
words, you want to keep the needle and discard the haystack.

A regular expression extracts information through capture. If you want to isolate the text you want from craft,
surround the pattern you want with parentheses. Indeed, you already used parentheses to collect terms; by
default, parentheses capture automatically.

To see capture, let's switch to Perl. (The grep utility does not support capture, because its purpose it to print lines
containing a pattern.)

The command:

perl -n -e '/"The\s+(.*)$/ && print "$1\n"' heroes.txt

prints:

Tick
Punisher

The command perl -e lets you run a Perl program right from the command line. The perl -n command
runs the program once on every line of the input file. The regex portion of the command, the text between the
slashes (/), says, "Match the beginning of string, then literals 'T,' 'h," 'e,' followed by one or more whitespace
character or characters, \ S+, and then capture every character to the end of the string.

Perl captures are placed in special Perl variables beginning with $1. The rest of the Perl program prints what was
captured.

6 of 9 03/27/2009 04:35 PM

Speaking UNIX, Part 9: Regular expressions http://www.ibm.com/developerworks/aix/library/au-speak...

Each nested set of parentheses, counting from the left, incrementing at each left parenthesis is placed in the next
special, numerical variable. For example:

perl -n -e '"/M(\w)+-(\w+)$/ && print "$1 $2"'

yields:

Spider Man
Ant Man
Spider Woman

Capturing text of interest just scratches the surface. When you can pinpoint material, you can surgically replace it
with other material. Editors such as Vi and Emacs combine pattern matching and substitution to find and replace
text in one fell swoop. You can also alter text from the command line using patterns, replace, and sed.

A rich topic

Regular expressions are extremely powerful; the number and kind of operators and techniques you can command
are enormous. There's so much information and practical knowledge that it's impossible to present but a fraction
here.

Luckily, three excellent sources of regular expression theory and practice are available:

® [fyou have Perl on your system, consult the Perl Regular Expression man page (type perldoc
perlre). It provides an excellent introduction to regex and has many useful examples. Many
programming languages have adopted Perl Compatible Regular Expressions (PCRE), so what you read in
this man page translates directly to the PHP, Python, Java™, Ruby programming languages, as well as
many other modern tools.

¢ Jeffrey Friedl's book, Regular Expressions (third edition), is considered the bible of regex use. Meticulous,
precise, clear, and practical, the book explains how matches work, all the regex operators, greediness
(restricting how many characters + and * match), and much more. Moreover, Friedl's book includes some
truly mind-blowing regular expressions to properly match fully qualified e-mail addresses and other
Request for Comments- (RFC) specified strings.

¢ Nathan Good's book, Regular Expression Recipes, presents helpful solutions to many common data
processing and filtering problems. Need to extract a zip code, phone number, or quoted string? Try
Nathan's solutions.

At the command line, you'll find many ways to use regular expressions. Virtually every command that processes
text supports regular expressions of one form or another. Most shell command syntax also expands regular
expressions to match file names, although the operators might function differently, greatly, or slightly.

For example, type Ls [a-c] to find the files named q, b, and c. Typing LS [a-c]* finds all file names that
begin with a, b, or c. Here, the * does not modify the [a-C] as grep's interpreter would; in the shell, * is
interpreted as . *. The ? operator works in the shell, too, but is interpreted as ., or match any single character.

Check the documentation for your favorite utility or shell to determine which regex operators are supported and
how, if at all, the operators are unique.

School's out!

This lesson was longer than usual. But now you know the ABCs of regular expressions. Go out and express
yourself.

While you enjoy recess, I'll start working on the soon-to-be pop classic "99 Lines About 99 Commands."

7 of 9 03/27/2009 04:35 PM

Speaking UNIX, Part 9: Regular expressions

Resources

Learn

® Safari bookstore: Visit this e-reference library to find specific technical resources.

Speaking UNIX: Check out other parts in this series.

http://www.ibm.com/developerworks/aix/library/au-speak...

AlX and UNIX: The AIX and UNIX developerWorks zone provides a wealth of information relating to all
aspects of AIX systems administration and expanding your UNIX skills.

New to AIX and UNIX?: Visit the New to AIX and UNIX page to learn more about AIX and UNIX.

AIX 5L™ Wiki: A collaborative environment for technical information related to AIX.

Check out other articles and tutorials written by Martin Striecher:

o

Across developerWorks and IBM

Search the AIX and UNIX library by topic:

0]

O O O O O O O O ©o

System administration
Application development

Performance

Porting

Security

Tips

Tools and utilities
Java™ technology
Linux

Open source

Get products and technologies

® IBM trial software: Build your next development project with software for download directly from
developerWorks.

Discuss

® Participate in the developerWorks blogs and get involved in the developerWorks community.

® Participate in the AIX and UNIX forums:

® zsh: Collaborate, discuss, and share your expertise of zsh on the zsh wiki.

0]

O O O O O O

AIX 5L -- technical forum
AIX for Developers Forum
Cluster Systems Management
IBM Support Assistant
Performance Tools -- technical
Virtualization -- technical
More AIX and UNIX forums

About the author

8of9

03/27/2009 04:35 PM

Speaking UNIX, Part 9: Regular expressions http://www.ibm.com/developerworks/aix/library/au-speak...

Martin Streicher is the Chief Technology Officer of McClatchy Interactive and the Editor-in-Chief of
Linux Magazine . Martin holds a Masters of Science degree in computer science from Purdue
University and has been programming UNIX-like systems since 1986. You can reach Martin at
martin.streicher@gmail.com.

Share this....

= Digg thisstory m" del.icio.us #+ Slashdot it!

UNIX is a registered trademark of The Open Group in the United States and other countries. Java and all Java-based
trademarks are trademarks of Sun Microsystems, Inc., in the United States, other countries, or both. Other company,
product, or service names may be trademarks or service marks of others.

90f9 03/27/2009 04:35 PM

