developerWorks. I

Just a few clicks
Edit the command line like an expert

Skill Level: Intermediate

Adam Cormany (acormany@yahoo.com)
National Data Center Manager
Scientific Games Corporation

01 Jul 2008

The way you interface with a computer is changing constantly. Operating systems
that once started as a command line-only interface have moved to a graphical front
end. But moving away from what made the operating system great isn't always a step
in the right direction. The IBM® AIX® operating system has kept to what's important:
stability, functionality, robustness. And it has done it by keeping a strong
command-line interface (CLI). If you never learned to use the CLI or need a refresher
on its basics, read on.

The way you interface with a computer is changing constantly. Operating systems
that once started as a command line-only interface have moved to a graphical front
end. Sometimes, however, moving away from the building blocks that made the
operating system isn't necessarily a step in the right direction. More often than not,
moving toward a graphical user interface (GUI) means losing functionality; in
addition, users become less inclined to learn more of the computer they’re working
with. Thankfully the AIX operating system—Iike other UNIX® and Linux®
systems—has kept to what's important: the stability, functionality, and robustness of
a computer's operating system.

The various UNIX and Linux vendors have kept a strong grasp of the importance
behind the CLI of an operating system. But for reasons of automation, making
computing easier for users, or something else, users have either forgotten or never
learned the ins and outs of the CLI. This article sheds some light on the CLI for
those users who haven't touched it much or for those who may need a little nudge to
remember why it's so important to administration, development, and general UNIX
computing.

Just a few clicks
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 13

mailto:acormany@yahoo.com
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

What is the command line?

When working on computers, it's important to understand what you're actually
working on. If you've ever worked on UNIX or Linux, it's a fair bet that you've heard
the term shell or the command line. The terms can be used synonymously and refer
to the actual UNIX shell the user is running. The term shell in UNIX refers to the
interface you use when typing commands or performing functions.

When a user logs in to a UNIX system through the console or over a network, a
definable shell (in /etc/passwd) is evoked, the user's environment is set up through
configuration files (explained later in this article), and the user is ready to perform
actions in the shell. When the user is typing a command on the command line—that
is, the shell he or she is using—the user only sees stdin, or standard in—that is,
input that the user or a program provides. When the user clicks Enter or Return, the
stdin is sent through the shell to execute, and the user may receive stdout, or
standard out, as well as stderr, or standard error, depending on how the output is
redirected (for example, to the user's display, a file, a printer). The term stdout is the
output data that the program executed returns, and stderr refers to errors that the
program encountered or returned. The user doesn't see all the low-level code
executions to handle single or multiple commands but rather a very simplistic input,
output, and error. Because of this, the program the user evoked when logging in has
been rightfully called a shell, because it hides all the operating system's low-level
calls.

The history of the shell

The UNIX shell has been around for more than 35 years now—through evolution
and enhancements—and is still going strong! It all began in 1971, when Ken
Thompson of AT&T Bell Laboratories created the first UNIX shell named
(appropriately) the Thompson shell. Fundamentals of the Thompson shell, such as
redirection of data, exists in shells used today, although the shell lacked some
important built-in functions that UNIX users use every day, such as pipes (|), the
ability to write shell scripts, and i f conditional statements.

As a result, the Thompson shell was replaced with the Bourne shell, or sh, in 1977.
The Bourne shell, created by Stephen Bourne of AT&T Bell Laboratories, became
the default shell for UNIX version 7 (V7). The shell took a huge leap into the future
for UNIX. Now, users could write shell scripts; store and export information in
variables; control file descriptors; control signal handling, f or loops, and case
statements; and so much more. Even though the Bourne shell was created more
than 30 years ago, it is still widely used by many current UNIX systems and is the
default shell for the superuser—root—on many UNIX systems today.

Over the past three decades, there have been changes and improvements to the

Just a few clicks
Page 2 of 13 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

UNIX shell. As a result, several different shells have been created. Figure 1
illustrates the family tree of a few of the UNIX shells. This figure is by no means
complete, but it shows the major shells from which other, minor shells have been
derived.

Figure 1. The UNIX shell family tree

Thompson Shell - 1871

Bourne (sh) - 1977 - . = G (esh) - 1978

Y

Bourne-Again (bash) - 1987 TEMEX G (tcsh) - 1981

&
L

Kom (ksh) - 1983

Z (zgh) - 1890 S - Almaguist (ash) - 1988

L i

Korn (ksha3) - 1993

The Korn shell

The Korn shell, or ksh, was originally developed by David Korn of AT&T Bell
Laboratories in 1982. The shell, like many other shells, is backwards compatible with
the Bourne shell (sh) and has evolved into a robust, stable, and very reliable shell in
its more than 25 years of existence. IBM uses the Korn shell as its default shell in
AIX. Two versions of Korn shell are available, and AIX contains both.

The first—and default shell for normal users in AIX—is the standard ksh shell. The
Korn shell conforms to the Portable Operating System Interface for Computer
Environments (POSIX), which is an international standard for operating systems.

The second Korn shell available in AlX is the enhanced Korn shell, called ksh93. In
addition to all the great features of the standard Korn shell, the enhanced Korn shell
contains such features as:

* Arithmetic enhancements

* Compound variables

Just a few clicks
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 13

http://www.ibm.com/legal/copytrade.shtml

developerWorks®

ibm.com/developerWorks

Compound assignments
Associative arrays
Variable name references
Parameter expansions
Discipline functions
Function environments
PATH search rules

Shell history

Additional built-in commands

For a complete list of enhancements and differences between ksh and ksh93, see
Resources.

Setting up the command-line environment with ksh

Before looking at editing the command line with ksh, you must set up your
environment. Setting up the Korn shell to your liking is relatively simple: While
logged in under ksh, view your current settings by using the - o switch with the set

command:

set -0
Current option settings are
al | export of f
bgni ce on
enacs of f
errexit of f
gnacs of f
I gnor eeof on
interactive on
keywor d of f
mar kdi rs of f
noni t or on
noexec of f
nocl obber of f
nogl ob of f
nol og of f
notify of f
nounset of f
privil eged of f
restricted of f
trackal | of f
ver bose of f
Vi of f
Vi raw on
xtrace of f

Here’s a brief explanation of each setting. (You can also find this explanation by
running man set.)

Just a few clicks
Page 4 of 13

© Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

« al |l export : Export all defined subsequent variables automatically.
* bgni ce : Run all processes in the background at a lower priority.

* enmacs : When editing the command-line text entered, use the
emacs-style inline editor.

e errexit :Ifacommand has an exit status of anything but O (zero),
execute the ERR trap (if it is set and exists).

* gmacs : When editing the command-line text entered, use the
gmacs-style inline editor.

* ignoreeof :Ignore end-of-file characters, and do not exit the shell. If the
user wants to exit, the user must type the exi t command or press
Control-D 11 times.

* keywor d : Rather than placing only the arguments that precede a
command, this option places all arguments in the environment for a
command, which can be viewed with the set command.

* mar kdi rs : Place a forward slash (/) on the end of all directories that are
from a file name substitution.

e noni tor : Run all processes in the background, as a separate process,
and inform the user when the process has finished by printing a line to
stdout.

* noexec : Do not execute the commands. Instead, just check for syntax
errors.
Note: This parameter isn't used if attempted in interactive shells.

* nocl obber : This flag prohibits existing files from being truncated when
output is redirected to it. If this option is used, truncating can still occur if a
greater-than symbol and a pipe (>|) are used, instead.

* nogl ob : File name substitution is disabled.

* nol og : Function definitions will not be stored in the history file if this
option is used.

e nounset : If substituting, all unset parameters will be returned as an
error.

* restricted: Run arestricted shell. Users cannot change directories;
change their SHELL, ENV, or PATH variables; execute a command that
contains a forward slash (/) in the pathname; or redirect output.

* trackal | : Each command, when initially run, will be a tracked alias.

* verbose : Display all input lines to stdout as the shell reads them.

Just a few clicks
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 13

http://www.ibm.com/legal/copytrade.shtml

developerWorks®

ibm.com/developerWorks

* vi : When editing the command-line text entered, use the vi-style inline
editor.

* viraw: As each character is typed, execute it as if it were typed in the vi
editor.

» Xxtrace : Display all commands and arguments as they are being

executed to stdout.

To turn options on with the built-in command set, use the - o switch. If you change
your mind, you can turn off the options you set by using the +o switch, instead.

The main option | focus on in this article is the inline editor switch. Depending on the
individual, some favor one file editor over another, be it vi, emacs, or gmacs. The
Korn shell accommodates all three. However, | focus on the vi inline editor. Setting
the inline editor option to vi is easy. Simply enter the option into the command you

used to view all the current settings:

set -0 Vi

That's it! To verify the setting, you can look at your current settings again:

Current option settings are

al | export
bgni ce
enacs
errexit
gnacs

I gnor eeof
interactive
keywor d
mar kdi rs
noni t or
noexec
nocl obber
nogl ob

nol og
notify
nounset
privil eged
restricted
t rackal

ver bose

Vi

Vi raw
xtrace

set -0

of f
on
of f
of f
of f
on
on
of f
of f
on
of f
of f
of f
of f
of f
of f
of f
of f
of f
of f
on
on
of f

Using the Korn shell vi inline editor

Now that your shell has been configured to use the vi inline editor, it's time to test it

Just a few clicks
Page 6 of 13

© Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

out.

Modifying text on the command line

When you type on the command line now, think of it as you're now in insert mode in
the vi editor. If you make a mistake or need to add something to the command to
execute, simply click the Esc key to exit insert mode and switch back to command
mode.

For example, the present working directory you're in has the contents:

#

— —h —

S
fileA i
fileB i

AAA fileAB fileABA fileABB
fil

fileAA le
fil eBAA | eBB eBBB

You want to find files that begin with fileAA and remove them:

find . -name "fileAB*" -exec rm{} \;

Before executing the line you typed, you notice that you made a mistake and
accidentally typed f i | eAB instead of f i | e AAl No need to worry. Simply exit insert
mode to switch into command mode, move the cursor to the incorrect letter, and
replace it—all using vi commands. To break down the command sequence, while
still in the insert mode of the inline editor:

1. Click Esc to switch to command mode.

2. Move the cursor left to highlight the B in the string "fileAB*" using vi-style
movement commands. (The H key moves left.)
Note: If you're accustomed to using the arrow keys in vi, it's wise to learn
the actual letters on the keyboard to move the cursor, as the TERM type
may differ and you may not achieve the desired results with the arrow
keys:

h: Left
I: Right
 k:Up

* j: Down

3. Replace the B with A using the vi-style "replace single character"
commands (that is, click R, and then type A).

Just a few clicks
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 13

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

When you've reviewed your work and agree that this is what you want, click Enter to
execute the command:

ind . -name "fil eAA*" -exec rm{} \;

fileA fil ileABA fileABB fileB fil eBAA
fileBB fil eBBB

File name completion

Another useful operation of the vi inline editor in the Korn shell is file name
completion. When executing commands, there are often times when a file you're
using as an argument for stdin or stdout (or stderr) is being written to a file. File
names can become long, there may be several files with similar names, or you
simply can't remember the full file name. This is where file name completion comes
to the rescue. If, when typing the file name, you get halfway through, simply click the
Esc key, then the backslash (\) key. It's convenient and saves a lot of time!

For example, | want to view the /etc/filesystems file on AlX, but | forgot the full file
name. | know it's in /etc, and | know the file begins with file, but that's it. | simply type
view /etc/file andclick Esc-\, and voila! ksh has completed the line for me.
The command line now reads vi ew /etc/fil esystens.

The same can be done on a directory structure, because they are really just file
names, too.

Viewing and modifying command history

How many times do you type the same command over and over while monitoring a
process or performing some other function on your UNIX system? Rather than
constant retyping, the Korn shell has a built-in command history for your review. If
you also have your inline editor set to vi , ksh allows you to pull the history of
commands executed by that user—sometimes only for that session, depending on
how you've configured your system—and modify the commands as you would any
other text typed on the command line.

If you've defined a file name in the variable HISTFILE, ksh allows users to pull from
their history and modify the commands or simply re-execute the original command.
For example, here are the last 10 occurrences of a sample $HISTFILE:

| # tail -10 $H STFI LE
s

cd ~cormany/testdir/dirA

AfileA 1>fileA out 2>fileA errors
pwd

ps —fu cornany

df —k .

ps —fu cornany

Just a few clicks
Page 8 of 13 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

find . —nane “fileA out” —ls
find . —nane “fileA errors” —Is
tail -10 $H STFILE

While on the command line, simply click Esc to enter command mode in the vi inline
editor, and then click K to pull the last command executed. Because you're still in
command mode, you can continue clicking K to move up the history of commands
executed or J to move down the list.

To help simplify the command-mode cursor movement, when you click Esc at a
command prompt, think of your $HISTFILE being loaded as a normal file in vi. In the
vi editor, the K key moves up one line, while the J key moves down a line. If clicking
Esc-J and using the sample $HISTFILE, visualize editing the $HISTFILE and the
cursor beginning at the bottom of the file. The line would betai |l -10

$HI STFI LE. If you clicked J again, you would move up a single line in the
$HISTFILE you're editing, which would be find . -name "fileA errors”

-l s.

Figure 2 provides a small "cheat sheet" comparing regular vi command-mode cursor
movement against the ksh vi inline editor command-mode movement.

Figure 2. A vi command-mode cheat sheet

Frevious
Move cursor up Cé‘ﬁ:ﬁgd
A
K. K.

Mowe cursor Move cursor Mowve cursor Mowve cursor
left —<— H L = right left =+— H L b= right
J J
] '

Move cursor down Following
history
command
vi edifor ksh i inline editor
Command mode Command mode

Command line versus shell script

There are times for shell scripts and there are times for command line use. If a task
Is to be performed on a routine basis or the task requested is complex, requiring
data manipulation, rather than asking users always to type the commands, a shell
script becomes useful. Other times, when it's a single occurrence and something
relatively simple, the command line can do the trick nicely.

Just a few clicks
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 13

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

For example, take this directory listing:

#1s
fileA tar.gz fileAA tar.gz fileB.tar.gz fileBB.tar.gz

If you simply want to uncompress the files, recompress them with bzip2, and transfer
them to ATC-AIX2, rather than typing a shell script, you could do it on the command
line. Think of a shell script as several command-line entries typed at once, because
that is what it really is, in a sense. When typing commands on a command line, it's
just like typing them into a script, and then executing the script.

You want to loop through the files in the directory that end with gz, uncompress
them, recompress with bzip2, and then use the scp command on the files to the
destination server of ATC-AIX. A loop works on the command line as nicely as it
does in a script. When beginning a | oop..i f conditional statement, case switch
statement, or other code block statements, the ksh you're running will simply move
the cursor to the next line, but the prompt will change to $PS2. When the code block
has been completed, the code block will executed and return the user to a $PS1
prompt.

In other words:

e $PS1 prompt: Waiting for the next command
e $PS1 prompt: Code block starts

* $PS2 prompt: Code block continues

» $PS2 prompt: Code block continues

* $PS2 prompt: Code block ends

» Code block executes

* $PS1 prompt: Waiting for the next command

The default value to variable PS2 is >. Going back to the previous function of
uncompress and then recompress, you would simply type the following at a ksh
command line:

for _FNAME in 'ls -1 *.gz'

> do

> gzip -d ${_FNAVE}

> bzi p2 ${_FNAVEY . gz}

> 3cp ${_FNAME% . gz} . bz2 cormany@\TC Al X2: / home/ cor many
> done

When you click Enter after completing the code block (that is, for a loop terminating

Just a few clicks
Page 10 of 13 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

with done), the loop will begin. The loop typed on the command line searches for all
files in the current working directory ending with .gz, uncompress them,
recompresses them with bzip2, and transfers them to the directory /home/cormany
on ATC-AIX2. It's as simple as that.

Conclusion

After reading this article, you should now be able to use the Korn shell in ways you
may not have known before. Mastering the command line can simplify your work and
help you better understand how to make the shell and command line work for you
rather than you working harder for it.

Just a few clicks
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 11 of 13

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

Resources

Learn
» Speaking UNIX: Check out other parts in this series.

» Wikipedia's AlX entry: Read Wikipedia's excellent entry on the AIX operating
system for more information about its background and development.

» Wikipedia's UNIX shells entry: Read Wikipedia for more information about UNIX
shells.

» Wikipedia's Korn shell entry: Read Wikipedia's excellent entry on the Korn shell.

* C/C++ and shell standard streams: Read Wikipedia's entry on standard
streams.

* The Korn shell: Learn more about the Korn shell on IBM's Commands
Reference (man) page.

» The enhanced Korn shell: Learn more about the enhanced Korn shell (ksh93)
on IBM's Commands Reference (man) page.

+ kdh93: Learn more about the enhanced Korn shell on the Combined IBM
System Information Center.

* The AIX and UNIX developerWorks zone provides a wealth of information
relating to all aspects of IBM® AIX® systems administration and expanding your
UNIX skills.

* New to AIX and UNIX? Visit the New to AlX and UNIX page to learn more.

» developerWorks technical events and webcasts: Stay current with
developerWorks technical events and webcasts.

* AIX: Visit this collaborative environment for technical information related to AIX.
* Podcasts: Tune in and catch up with IBM technical experts.
Get products and technologies

» IBM trial software: Build your next development project with software for
download directly from developerWorks.

Discuss
» Participate in the AIX and UNIX forums:
e AIX Forum
e AIX Forum for developers

e Cluster Systems Management

Just a few clicks
Page 12 of 13 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www-128.ibm.com/developerworks/views/aix/libraryview.jsp?search_by=speaking+UNIX+Part
http://en.wikipedia.org/wiki/AIX_operating_system
http://en.wikipedia.org/wiki/Unix_shell
http://en.wikipedia.org/wiki/Korn_shell
http://en.wikipedia.org/wiki/Standard_streams
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds3/ksh.htm
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds3/ksh93.htm
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.baseadmn/doc/baseadmndita/korn_shell_enhanced.htm
http://www-128.ibm.com/developerworks/aix/
http://www-128.ibm.com/developerworks/aix/newto/
http://www.ibm.com/developerworks/offers/techbriefings
http://www-941.ibm.com/collaboration/wiki/display/WikiPtype/Home
http://www-128.ibm.com/developerworks/podcast/
http://www-128.ibm.com/developerworks/downloads/?S_TACT=105AGY06&S_CMP=art
http://www-128.ibm.com/developerworks/forums/dw_forum.jsp?forum=747&cat=72
http://www-128.ibm.com/developerworks/forums/dw_forum.jsp?forum=905&cat=72
http://www-128.ibm.com/developerworks/forums/dw_forum.jsp?forum=907&cat=72
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

e IBM Support Assistant Forum
* Performance Tools Forum

* Virtualization Forum

* More AIX and UNIX forums

About the author

Adam Cormany

Adam Cormany is an UNIX systems engineer and has worked with AIX, Solaris, and
Red Hat Linux administration for more than 10 years. He is an IBM eServer®
Certified Specialist in pSeries® AlX System Administration. In addition to
administration, Adam has extensive knowledge of shell scripting in BASH, CSH, and
KSH, as well as programming in C, PHP, and Perl.

Trademarks

IBM and AlIX are registered trademarks of International Business Machines in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Just a few clicks
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 13 of 13

http://www-128.ibm.com/developerworks/forums/dw_forum.jsp?forum=935&cat=72
http://www-128.ibm.com/developerworks/forums/dw_forum.jsp?forum=749&cat=72
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=748
http://www-128.ibm.com/developerworks/forums/dw_auforums.jsp
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	What is the command line?
	The history of the shell
	The Korn shell
	Using the Korn shell vi inline editor
	Command line versus shell script
	Conclusion
	Resources
	About the author
	Trademarks

