Speaking UNIX, Part 1: Command the power of the com... http://www.ibm.com/developerworks/aix/library/au-unix-...

Speaking UNIX, Part 1: Command the power of
the command line

Mix and match UNIX utilities to create impromptu programs
Level: Introductory

Martin Streicher (martin.streicher@gmail.com), Chief Technology Officer, McClatchy Interactive

07 Mar 2006

Learn the basics of the UNIX shell and discover how you can use the command line to combine the
finite set of UNIX utilities into innumerable data transforms.

Speaking UNIX: Hello, shell

One of the most novel and differentiating features of a UNIX® system is its command line. With just a few
keystrokes, including a bit of "glue", you can use the command line to combine the finite set of UNIX utilities
into innumerable, impromptu data transforms.

For example, to find the list of unique filenames in the folder hierarchy rooted at the current working directory,
you can type the following at your shell prompt:

find . -type f -print | sort | uniq

This command line combines three separate utilities:

® find plumbs the depths of the named directory -- in this case, the file system starting at . or dot
(shorthand for the current working directory) -- and emits the names of all entries that match the given
criteria. Here, -type f directs find to discover only plain files.

® sort, asits name implies, processes a list and emits a new list that's sorted alphabetically.

®* uniq (pronounced "unique") scans a list, comparing adjacent elements in the list and removing any
duplicates. For instance, suppose you have this list:

Listing 1. Example list

Groucho
Groucho
Chico
Chico
Groucho
Harpo
Zeppo
Zeppo

uniq reduces the list to the following:

Listing 2. uniq command

Groucho
Chico
Groucho
Harpo
Zeppo

1of8 03/27/2009 04:47 PM

Speaking UNIX, Part 1: Command the power of the com... http://www.ibm.com/developerworks/aix/library/au-unix-...

However, if the original list of Marx Brothers is sorted first (reordering all occurrences of a name into a
continuous run), running Uniq yields this result:

Listing 3. Running uniq

Chico
Groucho
Harpo
Zeppo

To learn more about the extensive features of find, sort, and uniq, refer to each utility's man page on your
UNIX system.

Data in, data out, data all about

Used independently, find always takes the contents of the file system as its input data. However, both sort and
uniq require data entry or input from the standard input device (stdin). Most often, you provide stdin using the
keyboard: You type the data you want sorted on a series of lines, for example.

By default, find prints results on the standard output device (stdout), which is usually your terminal window.
Both sort and uniq print outcomes to stdout.

To demonstrate stdin and stdout, type the following text in your terminal window (assume that the leading
percent sign (%) is your shell prompt):

Listing 4. stdin and stdout

% sort
mustache
horn
hat
Control-D

sort reads the three lines you typed from stdin, sorts them, and writes the result to stdout. Figure 1 presents a
conceptual picture of running sort, and most UNIX command-line utilities, from the command line.

Figure 1. A typical UNIX command-line utility reads from stdin and writes to stdout

Standard
Input

F — [—"
Groucho Groucho
Groucho Chico

Chico Groucho

Chica Harpo
Groucho Zeppo

Harpo

Zeppo

Zeppo

Some utilities, such as find, don't read from stdin. Instead, they read the data they should process from system
resources, such as the file system or the system kernel, and write results to stdout. To visualize how find works,
look at Figure 2 below.

20f8 03/27/2009 04:47 PM

Speaking UNIX, Part 1: Command the power of the com... http://www.ibm.com/developerworks/aix/library/au-unix-...

Figure 2. Some utilities read data from system resources and write results to stdout
Standard
Cutput

In addition to using stdin and stdout, UNIX commands can emit error messages to a special outlet that's set aside
(by convention, not mandate) for diagnostics. The outlet is called the standard error device (usually referred to as
stderr). Figure 3 illustrates a simple command line running a utility.

o

7 Unixfile
W 5 stem find

Mo

file1.jpg
index_html

Figure 3. UNIX commands emit errors to a special channel, standard error

Standard

As shown in Figure 3, most UNIX commands read input from the terminal, send results to the terminal, and print
errors to the terminal. By default, and unless you specify otherwise, your terminal is the source of data for stdin
and the destination for both stdout and stderr.

Routing traffic to and fro

However, you can change the source of stdin and the eventual destinations of both stdout and stderr. You can
force stdin to read from a text file, a device (say, a probe connected to the computer), or a network connection.
Comparably, you can send output to a file, a device, or aconnection. In UNIX, where everything is a file, one
source or destination is just as easy to consume or produce as another.

Changing the source and destination of a process's data is referred to as redirection. You redirect stdin to read
data from a file or other source; and you can redirect stdout and stderr (separately) to write data somewhere other
than the terminal window. In many cases, as in the original find command shown earlier, you can also redirect

utilities to consume and produce data from and for other utilities. That is the purpose of the pipe (|). In a
command, you can daisy-chain processes together using pipes, sending the data of one command to the next
command, just like segments of copper pipe route water from your water heater to your sink.

Figure 4 shows a conceptualization of the find . -type f -print | sort | uniq command.
Figure 4. A conceptual model of three utilities linked by pipes

/ Uniix fil) ol | o | =g

| 5;5}:3; 1 -typef e g

1‘k"'\-.__-“"---_---‘j T
fipg

index html

The stdout of Tind becomes the stdin of uniq; in turn, the stdout of uniq becomes the stdin for sort.
Finally, sort prints the results to its standard output device, which remains connected to the terminal. The stderr
of the commands wasn't redirected, so all three utilities print error messages to the terminal. (Error messages from

30f8 03/27/2009 04:47 PM

Speaking UNIX, Part 1: Command the power of the com... http://www.ibm.com/developerworks/aix/library/au-unix-...

the three utilities are intermixed, but the order of the messages will be correct.)

If necessary, you can extend the pipeline shown above further and redirect the output of uniq to yet another
utility. Just tack on another pipe to extend the transform further. For instance, you can append | less to
paginate the output using 1€ss, or you can add | wC -1 to find the number of unique filenames. (WC is an
acronym for word count; WC can count characters, words, and lines.)

Alternatively, you can use > to save the output of the entire sequence to a file (destroying the existing contents of
the file, if any). You can also use >> to append the results to an existing file (creating the file if it doesn't exist).

Another helpful redirection is <. Figure 5 shows how stdin can be redirected to read from a file. The command
sort reads a list of words from the named file and alphabetizes them.

Figure 5. Redirecting standard input to read from a file

=)

tomato apple
apple banana
cherry cherry

pineapple grape

Often, you'll want to capture stdout and stderr. For example, if you're running a large data-mining task, you
might want to review the interim output and any errors that occurred during execution. You can use variants of

the redirection syntax to do just that: | &, >&, >>&, pipe, create, and append stdout and stderr simultaneously,
respectively. Figure 6 illustrates how stdout and stderr are combined into one output stream.

Figure 6. Combining the standard output and standard error devices

stdout

Standard
Input

Introducing the Z shell

Most modern UNIX shells -- including the Bourne shell (bash) and the Korn shell (ksh) -- support the
redirections mentioned here, although the specific syntax required by both of those shells might differ slightly.
(Check your shell's documentation for specifics.).

Most of the redirection operators have been consistent features of all UNIX shells for at least 25 years. However,
most of those shells have failed to break new ground and explore new ways to apply redirection. For instance,
most shells can only redirect input from a single file, and you must use a utility like tee to output to more than
one destination. (Like the tee junction used by plumbers, tee has one input and two outputs.) Here's an example
using bash as the shell (the command-line interpreter):

Listing 5. bash example

bash$ 1s
tellme
bash$ cat tellme

4 of 8 03/27/2009 04:47 PM

Speaking UNIX, Part 1: Command the power of the com... http://www.ibm.com/developerworks/aix/library/au-unix-...

echo Your current login, working directory, and system are...
whoami

pwd

systemname

bash$ bash < tellme |& tee log

Your current login and working directory are...
strike

/home/strike

bash: systemname: command not found

bash$ 1s

tellme log

bash$ cat log

Your current login and working directory are
strike

/home/strike

bash: systemname: command not found

Although UNIX shells are highly specialized and generally used interactively using the keyboard, a shell such as
bash can also read input from a file. (After all, stdin is just a file.) In the previous snippet, the phrase bash <
commands makes bash execute a list of commands found in the file tellme. The phrase |&tee log pipes the
stdout and stderr of bash to the tee utility, which prints its stdin to stdout and to the file log.

But what if you want bash to process more than one input file? cat filel file2 file3 | bashisa

workable solution, and perhaps the only one, because bash doesn't support syntax like bash < filel <
file2 < file3.

Moreover, bash can't redirect output to more than one destination. For example, you can't enter an instruction
like bighairyscript > ~/log | mail -s "Important stuff" team from the bash
command line.

But a relatively new shell, the Z shell (zsh; see Resources), can process multiple input and output redirections
within the same command line. For example, here's a command that saves stdout in a file called log and sends it
to you using e-mail:

Listing 6. Z shell

zsh% bash < tellme > log | mail -s "Who you are" 'whoami'
bash: 1line 4: systemname: command not found

zsh% <log

Your current login, working directory, and system are...
strike

/home/strike

(The phrase 'whoami' runsthe command whoami and inserts the result of that command in place of the
phrase. It's like running a little shell command before the rest of the command line runs.)

Let's walk through the previous command from left to right. The bash command creates the file log and mails
the stdout of the commands found in tellme to you. Because stderr wasn't redirected by the > or the pipe, error
messages are printed to stdout. The command <104 is another Z shell shortcut; it's the same as cat. (And yes,
the command > file isequivalentto cat > file))

The Z shell can also process more than one input redirection. The Z shell command line cat < filel <
file2 < file3isthesameascat filel file2 file3. Admittedly, the former syntax is more
unwieldy than the latter and, in general, multiple stdout redirection is used far more often. However, if the utility
you want to run doesn't accept multiple input arguments, the Z shell's multiple input redirection can come in
handy.

The Z shell is full of other novel tricks, including better globbing (wildcard matches), advanced pattern matches,
and an extensive automatic completion system that minimizes what you have to type at the command line. The
next two articles in this series will delve further into the Z shell.

50f8 03/27/2009 04:47 PM

Speaking UNIX, Part 1: Command the power of the com... http://www.ibm.com/developerworks/aix/library/au-unix-...

Shell tricks

Here are some powerful command-line combinations that are sure to make you more productive. The commands
should work in all shells, not just zsh.

® Create a verbatim copy of any directory, including symbolic links, with tar:

tar cf - /path/to/original | \
(mkdir -p /path/to/copy; cd /path/to/copy; tar xvf -)

The first tar archives the directory /path/to/original and emits the archive file to stdout; the hyphen (-)
used with the create (C) option specifies stdout. The command in parentheses is a subshell: Commands in
the subshell don't affect the environment of the current shell. mkdir -p creates the named directory,
including any intermediate directories that need to be created; and cd changes to the new directory. The
second tar reads an archive from stdin and expands it in place; the hyphen used with the extract (X)
option refers to stdin.

® To save the stdout of a command sequence and view it at the same time, use Lless -0 file .The -0
option copies stdin to the named file . Here's an example:

sort /etc/aliases | less -0Osorted

® If a directory contains thousands of files, your shell (including zsh, depending on the number of files and
their names) might not be able to enumerate all the files using wildcard matches, because the command line
is typically limited to a certain number of characters. Hence, shell script phrases such as

foreach i (*)

end

might fail. (You'll probably see a message like Line length exceeded when you exceed the length
of your command line.) If such an error occurs, use a pipe and the Xargs utility. Xargs reads data from
a pipe and runs a specified command for every line read.

For instance, if you want to find all Web pages on your server that reference www.example.com, you can
use this command line:
% find / -name '*html' -print \

| xargs grep -1 'www.example.com' \
| less -Opages

xargs consumes the filenames from find and runs grep -1 repeatedly to process every file, no matter
how many files are named. (grep -1 prints the name of the file if a match is found and then stops further
matching in that file.) Less allows you to page through the results and saves the list in the file named
pages. The result is a list of filenames that contain the string "www.example.com".

The journey begins

6 of 8 03/27/2009 04:47 PM

Speaking UNIX, Part 1: Command the power of the com... http://www.ibm.com/developerworks/aix/library/au-unix-...

In this article, you learned the basics of the UNIX shell. Subsequent articles will delve more deeply into the
plethora of command line tools and techniques at your disposal. From file systems to entire local area networks,
virtually all information and systems administration can be undertaken efficiently from the UNIX command line.

Stay tuned!

Resources

Learn
® Speaking UNIX Check out other parts in this series.

® zsh mailing list archive: Read this list to learn more Z shell tricks and tips.

® AIX and UNIX: Want more? The developerWorks AIX and UNIX zone hosts hundreds of informative
articles and introductory, intermediate, and advanced tutorials.

® developerWorks technical events and webcasts: Stay current with developerWorks technical events and
webcasts.

® Podcasts: Tune in and catch up with IBM technical experts.

Get products and technologies
® 7 shell: Download the latest version of Z shell from the Z shell home page.

¢ IBM trial software: Build your next development project with software for download directly from
developerWorks.

Discuss

® zsh wiki: Collaborate, discuss, and share your ZSh expertise.

® Participate in the AIX and UNIX forums, developerWorks blogs, and get involved in the developerWorks
community.

About the author

Martin Streicher is the Chief Technology Officer of McClatchy Interactive and the Editor-in-Chief of
Linux Magazine . Martin holds a Masters of Science degree in computer science from Purdue
University and has been programming UNIX-like systems since 1986. You can reach Martin at
martin.streicher@gmail.com.

Share this....

= Digg thisstory m® delicio.us #+ Slashdot it!

7 of 8 03/27/2009 04:47 PM

Speaking UNIX, Part 1: Command the power of the com... http://www.ibm.com/developerworks/aix/library/au-unix-...

UNIX is a registered trademark of The Open Group in the United States and other countries. Other company,
product, or service names may be trademarks or service marks of others.

8 of 8 03/27/2009 04:47 PM

