Speaking UNIX, Part 2: Working smarter, not harder http://www.ibm.com/developerworks/aix/library/au-speak...

Speaking UNIX, Part 2: Working smarter, not
harder

Shell shortcuts save typing, toil, and time
Level: Intermediate

Martin Streicher (martin.streicher@gmail.com), Chief Technology Officer, McClatchy Interactive

08 Aug 2006

Learn how to leverage the many shortcuts that the UNIX® shell provides. With a little practice, you'll
work smarter, not harder.

Every skilled trade has its secrets -- those little tricks, techniques, and tools that make light of even the most
complex task. For instance, my neighbor is a master carpenter. His naked eye can measure and transfer angles
with great precision, miters join seamlessly, and his finishing work has earned him acclaim in local newspapers.

But what's more remarkable (at least to me -- a lay person and an accident waiting to happen) is the relative ease
with which he works. After some 20 years in the trade, there isn't a shortcut he hasn't mastered. The shortcuts
shave a smidgen of time here, some labor there, yet with repetitive tasks such as making cuts, driving nails, and
assembling framing, the savings really add up.

Programmers, system administrators, and other UNIX® computer professionals have their own kind of
specialized tools:

CPUs

RAM

Operating systems
Applications

The shell

And just like an experienced carpenter, knowing a few tricks and applying a few tools can save a great deal of
time and effort. The first installment of Speaking UNIX introduced the power of the UNIX command line. This
article shows you some handy shell shortcuts that are sure to expand your mastery of the shell prompt.

Give your fingers a break, don't break your fingers

As Part 1 showed, the power of the UNIX command line is unmatched. With just a few keystrokes and a bit of
syntactic glue, including pipes (|), tee, and redirection, you can assemble your own impromptu data transforms
at each shell prompt.

For example, this command finds all of the text documents in your home directory that contain the words
Monthly Report:

$ find /home/joe -type f -name '*.txt' -print | xargs grep -1 "Monthly Report"

The command searches your entire home directory (find /home/joe) to find all regular files (-type f)
with the suffix . txt, and then runs the grep command to search for the string Monthly Report. The -1
option prints the file's name if a match was found. Hence, the output of the command is a list of files that match.

While the command above is useful, it's onerous to remember and retype, especially if you use the command
regularly. Moreover, when the command line is your primary interface to e-mail, files, tools (such as editors,
compilers, monitors), and remote systems, any time and effort you can save at the command line can be better
spent on the task at hand. After all, a thousand few fractions of a second really add up.

1of 11 03/27/2009 04:45 PM

Speaking UNIX, Part 2: Working smarter, not harder http://www.ibm.com/developerworks/aix/library/au-speak...

To make light of repetitive tasks, UNIX shells provide a variety of helpful shortcuts, including:

Sigils

Wildcards

A command history
Environment variables
Aliases

Startup files

For example, you can refer to your home directory with the sigil ~ (tilde). You can also refer to your home
directory using the $HOME environment variable, as shown in Listing 1.
Listing 1. UNIX shell shortcuts

$ whoami
strike

$ echo ~
/Users/strike

$ echo $HOME
/Users/strike

$ 1!
echo $HOME
/Users/strike

That last command, ! ! (two exclamation marks), might look a little strange, but it's a command history sigil that
repeats the previous command verbatim. (Many shells also allow you to browse the list of previous commands
using the up arrow key, or by pressing Control+P.)

Let's look at each kind of shell shortcut in more detail. This article is based on the Z shell (zsh -- see Resources),
which is typically installed in /bin/zsh. (If your system doesn't have the Z shell, ask your system administrator to
install it.) The Z shell has a few special features; otherwise, all the examples shown here work in all modern UNIX
shells.

Shell sigils

Many command-line arguments are used so frequently that shells provide sigils, or symbols, as shorthand. You
simply type the sigil in place of the argument.

As mentioned above, ~ refers to your home directory. A similar shorthand, ~username , refers to username's
home directory. For example, ~j 0€ refers to joe's home directory. So, to copy a file from joe's doc directory to
your info directory, you could type:

$ cp ~joe/doc/report.txt ~/info

Assuming that joe's home directory is in /guests and your home directory is /staff/bobr, ~j 0e is replaced with
/guests/joe and ~ becomes /staff/bobr; finally yielding the command cp /guests/joe/doc/report.txt
/staff/bobr/info. (See the sidebar, "Proofing vour work" to learn how to preview your command line.)

Another valuable sigil is . . (two periods), shorthand for the | Proofing your work

directory immediately above the current directory. With . . If you want to see what a command-line sigil
and ., the sigil for the current working directory, you can expands to, use the echo command:

refer to files and directories in the file system relative to your

current\vorking djrectory. $ echo ~joe/doc/report.txt ~/info

20f11 03/27/2009 04:45 PM

Speaking UNIX, Part 2: Working smarter, not harder http://www.ibm.com/developerworks/aix/library/au-speak...

For instance, if your current working directory is
~/jane/projects/lambda, the shorthand ../ .. refersto the

/guests/joe/doc/report.txt /staff/bobr/info

$ echo $SHELL

directory two directories above, or ~/jane. To refer to the /bin/zsh
directory that contains ~/jane, youcanuse ../../../ 6 1
. . . S
("three directories above") or the path ~jane/../. The architecture.txt Services.pdf
latter path says start at ~jane, and then go up one directory. services.txt Schema.pdf

fil di d $ echo *.txt
To copy a file to your current directory, you need not name architecture.txt services.txt

it; simply refer to it as . ("dot"):

The echo command emits whatever you type
on the command line. However, because the
shell expands (most) command-line arguments
before invoking any program, the command
prints the results of all substitutions. (The shell
environment variable, $SHELL, contains the
name of the currently running shell.)

$ cp -pr /path/to/lots/of/stuff .

The former command recursively copies the
/path/to/lots/of/stuff directory to your current directory,
preserving the original time and date stamps. Path names that
refer to . . and . are called relative path names. Path names
that begin with a / (forward slash) or a ~ (tilde) are called
absolute path names because you're referring to the file from the top of the file system, or from the top of a
directory hierarchy.

Wildcards and patterns

With sigils, you reduce your typing time and can refer to a specific directory quickly and concisely. Wildcards
are another form of shorthand to refer to the contents of a directory.

For example, assume that you have a directory containing 100 files. Some are C source code files that end with
the suffix .c, others are object files with suffix .o, and still others are text documents (.£x?), scripts (.s4), and
executables (files with execute permission). To list only the C files, simply type:

$§ 1s *.c

The wildcard * (typically called star rather than asterisk) means match any sequence of characters. The . C file
name extension is a literal pattern that matches only a period followed by a lowercase ¢. So, * . C means any
sequence of characters followed by a period and a lowercase c. Given *. C, the shell looks in the current
directory (unless you provide a leading absolute or relative path name), finds every file name that matches the
pattern, expands *. C to that list of names, and passes the list as arguments to the 1S command.

Listing 2 demonstrates the use of * . C based on the source code to wget, the command-line download utility.

Z shell globs

The Z shell has several unique and marvelous glob
operators. Here are a few that stand out.

Listing 2. Use wildcards to find C source code files in
a directory

$ 1s *.c

alloca.c The **/ glob operator expands to all directories
ansizknr.c below and includes the current working directory.
cm . C

coﬁnect,c Think of **/ as a built-in find command.

convert.c Referring to the wget source code again, you can

find all the Makefiles with the command:

3o0f11 03/27/2009 04:45 PM

Speaking UNIX, Part 2: Working smarter, not harder

4 0of 11

The process of expanding a wildcard to the list of
matching file names is called globbing, and UNIX shells
have a variety of globbing operators (so-called globs)
to help you express what you're looking for:

® The glob * (star) matches any character or
sequence of characters, including an empty
sequence.

® The glob ? (question mark) matches any single
character.

® The glob [] (square brackets) matches any of
the enclosed characters. Within the brackets, you
can refer to a range of characters by using -
(hyphen), asin [a-2z] or all lowercase letters.

(The Z shell has many unique glob operators. See the
sidebar, Z shell globs for more information.)

You can also repeat glob operators as necessary. Listing
3 provides additional examples.

Listing 3. Wildcard examples

1% 1s -1 -a -F
./1libs

Changelog
Changelog-branches/
Makefile
Makefile.in
alloca.c

ansi2knr.c

cmpt.c

cmpt.o

config.h
config.h.in
connect.
connect.
connect.
convert.
convert.
convert.

O TN O SN

wget*
2 $ 1s -a -F .*
./11ib

3% 1s -1 *.?
alloca.c
ansi2knr.c
cmpt.c
cmpt.o
config.h
connect.
connect.
connect.
convert.
convert.
convert.

O TN O SN

4 $ 1s -1 ?22?22.?
cmpt.c
cmpt.o

5% 1s [a-c]?*.*
alloca.c
ansi2knr.c
cmpt.c

http://www.ibm.com/developerworks/aix/library/au-speak...

$ echo **/Makefile

Makefile doc/Makefile po/Makefile
src/Makefile util/Makefile
windows/Makefile

03/27/2009 04:45 PM

Speaking UNIX, Part 2: Working smarter, not harder http://www.ibm.com/developerworks/aix/library/au-speak...

cmpt.o

config.h
config.h.in
connect.
connect.
connect.
convert.
convert.
convert.
cookies.
cookies.
cookies.

O N O N O SN

In Listing 3, Command 1 shows all the entries in the directory, including those entries that begin with . (dot) in a
long list. (The -a option shows the so-called dot files; the - 1 option lists everything in one column; and the - F
option highlights directories with a / (forward slash) and executables with a * (star).)

Command 2 finds each entry whose name begins with a dot (hence .*). The third command finds only those
items that have a one-letter suffix.

The fourth command finds only those items that have four characters followed by a dot and one character.
Finally, Command 5 finds items that begin with lowercase @, lowercase b, or lowercase ¢ and are followed by at
least one letter, then anything, then a period, and then any suffix. As you can see, you can repeat the glob
operators as needed.

So, what would 1S *. z yield (assuming no such files exist)? It yields a helpful error message:

$ 1s *.z
zsh: no matches found: *.z

A bit of (command) history

So far, you've seen how to specify paths and pick and choose files. You can express yourself at the command
line. However, even if all command lines were short and sweet, chances are you would still get tired of typing the
same thing over and over again. In particular, you would probably get weary of typing long, complex command
lines with loads of options, or where the order of the arguments has to be just so. Luckily, most shells maintain a
history of previous commands. To rerun a command, you simply find its entry in the history list and rerun it.
And like other parts of the shell, shortcuts make references quick and easy.

To enable command history in Z shell, type:

$ HISTSIZE=500
$ SAVEHIST=500

Here, the commands specify that both the shell and the persisted history file should retain the last 500 commands.
(By default, Z shell saves only the last 30 commands.) Check your shell's documentation for information on how
to capture and persist command histories.

After working in the shell a while, you can view your command history by simply typing history:

$ history

781 /bin/ls -d */

782 /bin/ls -F *(/)
783 /bin/ls -d -F *(/)
784 /bin/ls -d -F */
785 /bin/ls -d */

50f11 03/27/2009 04:45 PM

Speaking UNIX, Part 2: Working smarter, not harder http://www.ibm.com/developerworks/aix/library/au-speak...

Each command you run is assigned a sequential, numerical identifier. You use that identifier, such as 782, to
refer to an entire command and to parts of each command. To rerun a command verbatim, type ! (exclamation
mark) followed by the command's number:

$ 1785
Changelog-branches/ doc/ po/ src/ util/ windows/

If you want a specific argument from a historical command, refer to the command with a ! (exclamation mark)
and provide N, where 0 refers to the command name, 1 refers to the first argument, and so on. For example, to
extract the second argument of command 782 in the history log, type the code shown in Listing 4.

Listing 4. Extract the second argument from command 782

$ echo !782:2
echo *(/)
Changelog-branches doc po src util windows

$ 1s AUTHORS COPYING INSTALL MACHINES
AUTHORS COPYING INSTALL MACHINES

$ echo !!:3
echo INSTALL

$ history -2
788 1s AUTHORS COPYING INSTALL MACHINES
789 echo INSTALL

$ echo !788"
echo AUTHORS
AUTHORS

$ echo !788%
echo MACHINES
MACHINES

The command history -2 prints the previous two commands. As shortcuts, you can refer to the first
argument of a command (not the command name itself) using ™ (carat), and you can refer to the last argument of
a historical command with the shortcut $ (dollar sign). You can also refer to a range of arguments using a range
notation, as shown in Listing 5.

Listing 5. A range notation

$ echo AUTHORS COPYING INSTALL MACHINES
AUTHORS COPYING INSTALL MACHINES

$ echo !!:1-2

echo AUTHORS COPYING

AUTHORS COPYING

There are also other, more direct ways to recall historical commands. One way is to search for it:

$ 1s I*
$ 1s M*
$ echo !?M
1s INSTALL

The construct ! ?M asks for the most recent historical command line that contains an uppercase letter M.

Environment variables

6o0f11 03/27/2009 04:45 PM

Speaking UNIX, Part 2: Working smarter, not harder http://www.ibm.com/developerworks/aix/library/au-speak...

Speaking fluent command line is an essential UNIX skill. But speaking UNIX doesn't stop at the shell prompt --
you must also communicate with the myriad of UNIX utilities. In UNIX, environment variables retain settings in
your shell and allow you to propagate your preferences to each and every utility you launch from the command
line.

Some environment variables -- called shell variables -- are used only by your shell to control its behavior. For

instance, only the Z shell uses $HISTSIZE and $SAVEHIST, shown above, to manage command histories.
Think of shell variables as settings.

Other environment variables are exported, or made globally available, and are copied into the process space (the
environment) of every command you launch from the command line. For example, $HOME is a special
environment variable that retains the location of your home directory. The UNIX login sequence sets $HOME
(and other environment variables), and then starts your shell, which in turn uses $HOME to find all your shell
startup files. Other applications that you launch, such as SSH and FTP, refer to $HOME to find your .netrc file
(used to store confidential, remote access passwords). Some environment variables -- such as $HOME, $PATH,
and $SHELL -- every application uses. Other environment variables might be unique to an application.

To see all your current environment variables, type printenv, as shown in Listing 6. (Depending on how your
system administrator configured your system, you might have many more, or far fewer, environment variables
than are shown here.)

Listing 6. View environment variables

$ printenv

PATH=/Users/strike/bin:/Applications/xampp/xamppfiles/bin:/Users/strike/bin:/usr/bin:/
bin:/usr/sbin:/sbin

HOME=/Users/strike

SHELL=/bin/zsh

USER=strike

TERM=xterm-color

LOGNAME=strike

SHLVL=1

PWD=/Local/src/versions/wget/wget-1.9

OLDPWD=/Local/src/versions/wget/wget-1.9/src

PERLS5LIB=/Applications/xampp/xamppfiles/lib/perl5/site_perl/5.8.7:/Projects/IGSP/src

CLICOLOR=true

MANPATH=/Local/root/share/man:/usr/share/man:/opt/local/share/man

INFOPATH=/o0opt/local/share/info

LESS=-n

You likely recognize many of these variables; others might be new. The shell level ($SHLVL) shows how many
shells deep you are. A 1 indicates a login shell; a 2 means that you launched another shell from your login shell,
and so on. You can use the value of $SHLVL to change your prompt for each subsequent, nested shell. $TERM
reflects your terminal (probably terminal emulator) settings -- important for ensuring proper rendering of text,
colors, as well as proper interpretation of keystrokes. $PWD is your current working directory, while $0LDPWD is
your previous working directory. You can use both variables to quickly go back and forth between two
directories, as shown in Listing 7.

Listing 7. Toggle between directories

$ echo $PWD
/Users/strike

$ echo $OLDPWD
/Local/src/versions/wget/wget-1.9

$ cd $OLDPWD

$ echo $PWD
/Local/src/versions/wget/wget-1.9

70f 11 03/27/2009 04:45 PM

Speaking UNIX, Part 2: Working smarter, not harder http://www.ibm.com/developerworks/aix/library/au-speak...

8of11

$ echo $0LDPWD
/Users/strike

The remaining environment variables in the list above are application-specific. Each retains preferences that
control how each associated application works when you launch it. $PERL5LIB is a search path for Perl to find
custom libraries. The 1S command uses $CLICOLOR to render file types in color (directories in blue,
executables in green, and so on). Custom application environment variables are typically documented in the
program's man pages.

Setting an environment variable is identical to setting a shell variable. However, you must export the variable to
make it globally available:

$ MYVARIABLE=$HOME/projectX
$ export TMPDIR=/tmp/projectX

The former command sets a shell variable named $MYVARIABLE. (The leading dollar sign is the shell prompt.
When you set a variable, you don't provide the $. However, you do need the dollar sign, as in $MYVARIABLE,
whenever you use the variable.) $MYVARIABLE is visible only to the shell, because it wasn't exported. To see a
list of all shell variables, type set. The output of set includes the environment variables, because those are
available to the shell as well.

In the latter command, $TMPDIR is set, exported, and available to all applications launched from the shell. One
application that uses $TMPDIR is the GNU Compiler Collection (GCC) compiler. The value you store in
$TMPDIR is where GCC generates its temporary files.

If you want to remove an environment variable, simply type unset and the name of the variables, as shown in
Listing 8.

Listing 8. Remove an environment variable

$ set

HOME=/Users/strike
MYVARIABLE=/Users/strike/projectX
TMPDIR=/tmp/projectX

$ unset MYVARIABLE TMPDIR

$ set
HOME=/Users/strike

Aliases and startup files

The previous sections might have you concerned about just how much you have to type at the command line.
Yes, there's a lot to learn -- this is because the shell environment is so rich. Remember, though, that with great
power comes great productivity (many apologies to Spider-man).

To conserve those precious keystrokes and retain all the settings you've made, UNIX shells offer aliases and
startup files, respectively. Aliases are shortcuts that you create. Startup files are read each time your shell starts
and are the ideal place to store (and share) all your shell settings, such as shell variables (options), environment
variables, and aliases.

An alias is a short sequence that you use instead of a longer command. You can think of an alias as a nickname

03/27/2009 04:45 PM

Speaking UNIX, Part 2: Working smarter, not harder http://www.ibm.com/developerworks/aix/library/au-speak...

9of11

for a command line. Instead of typing:

$ find /home/joe -type f -name '*.txt' -print | xargs grep -1 "Monthly Report"

at the command prompt, you might type a nickname that you created:

$ findreports

The shell does the heavy lifting, replacing findreports with its expansion. To create the findreports
alias, type:

alias findreports='find $HOME -type f -name "*.txt" -print |
xargs grep -1 "Monthly Report"'

Single quotation marks must delimit each alias. If you need quotation marks inside the alias, use double quotation
marks. Z shell aliases can contain many shell primitives, including variables, pipes, redirection, other aliases, and
other shell operands, as shown in Listing 9.

Listing 9. Z shell primitives

$ alias 11='/bin/ls -1'

$ 11 -d 2002*

drwxrwxr-x 2 www-data www-data 4096 Jan 16 2002 2002-02
drwxrwxr-x 2 www-data www-data 4096 Jan 22 2002 2002-03
drwxrwxr-x 2 www-data www-data 4096 Apr 15 2002 2002-04
drwxrwxr-x 2 www-data www-data 4096 Apr 19 2002 2002-05

$ alias 1t='11 -t'

$ 1t -d 2002*

drwxrwxr-x 2 www-data www-data 4096 Apr 19 2002 2002-05
drwxrwxr-x 2 www-data www-data 4096 Apr 15 2002 2002-04
drwxrwxr-x 2 www-data www-data 4096 Jan 22 2002 2002-03
drwxrwxr-x 2 www-data www-data 4096 Jan 16 2002 2002-02

$ alias m='pinky | grep mstreicher'
$m
mstreicher Martin Streicher

$ alias snap='pinky >> ~/.pinky'

$ snap

$ snap

$ cat ~/.pinky

Login Name TTY Idle When Where

mstreicher Martin Streicher pts/0 Jun 18 16:40 cpe-071-065-224-025.nc.res.rr.com
Login Name TTY Idle When Where

mstreicher Martin Streicher pts/0 Jun 18 16:40 cpe-071-065-224-025.nc.res.rr.com

The alias 11 refers to /bin/ls -- absolute paths are never replaced by alias substitution.

When you type L1, it's replaced by its alias, and any remaining command-line arguments are appended. Hence,
Ll -d 2002* isreally the command /bin/1ls -1 -d 2002*. The alias Lt refersto L1 and adds the -t
flag to sort by creation time. The 1t alias expandsto /bin/ls -1 -t -d 2002*. The m alias includes a
pipe. The snap alias uses redirection to append the output of a command to a file.

To see all the aliases set in your shell, just type alias (with no arguments), as shown in Listing 10.

Listing 10. View all the aliases in your shell

$ alias
alias findreports='find $HOME -type f -name "*.txt" -print | xargs grep -1
"Monthly Report"'

03/27/2009 04:45 PM

Speaking UNIX, Part 2: Working smarter, not harder http://www.ibm.com/developerworks/aix/library/au-speak...

alias 11='/bin/1ls -1'

alias 1t="11 -t'

alias m='pinky | grep mstreicher'
alias snap='pinky >> ~/.pinky'

If you want to remove an alias, just type unalias and the alias's name. You can also list multiple aliases at a
time, as shown in Listing 11.

Listing 11. View multiple aliases simultaneously

$ unalias m snap

$ alias

alias findreports='find $HOME -type f -name "*.txt" -print | xargs grep -1
"Monthly Report"'

alias 11='/bin/1ls -1'

alias 1t="11 -t'

Finally, after you've worked hard to set up your environment just so, you'll want to keep your settings for next
time. Indeed, you want your shell to be consistent from session to session and from instance to instance -- say,
when multiple terminal windows are open on your workstation.

Shells include startup files to (re)initialize your environment when your shell starts. Startup files can be simple --
just a list of variables and values -- or quite complex, including customization logic and elaborate functions.
Some users keep many sets of startup files, one set per project.

Z shell uses the startup files .zshrc and .zprofile, both of which reside in your home directory. (Other shells have
similar files with similar names, and you can read your shell documentation for specifics. Some shells also
provide for shutdown files, or files to run when your shell is exiting.) The .zshrc file is sourced, or read, and
processed whenever you start a new shell; the .zprofile file is sourced only when you start a login shell.

After you've configured your shell, take a snapshot of your settings and save them in one of the shell startup files:

$ set >> $HOME/.zshrc
$ alias >> $HOME/.zshrc

Note: You might want to edit the resulting .zshrc file and remove variables that are session-specific.

More power

Whew! This installment of Speaking UNIX covered a lot of ground, but your diligence should yield vast rewards.
Work smarter, not harder, and save the extra time to do really important things, like play slashem.

Next time, Speaking UNIX goes positively old school. I'll forgo those trendy browsers and examine how to
connect, download, upload, transfer, and communicate entirely from the command line.

Stay tuned.

Resources

Learn
® Speaking UNIX: Check out other parts in this series.

10 of 11 03/27/2009 04:45 PM

Speaking UNIX, Part 2: Working smarter, not harder http://www.ibm.com/developerworks/aix/library/au-speak...

® zsh mailing list archive: Read this list to learn more Z shell tricks and tips.

¢ AIX and UNIX: Want more? The developerWorks AIX and UNIX zone hosts hundreds of informative
articles and introductory, intermediate, and advanced tutorials.

® developerWorks technical events and webcasts: Stay current with developerWorks technical events and
webcasts.

® Podcasts: Tune in and catch up with IBM technical experts.

Get products and technologies
® 7 shell: Download the latest version of Z shell from the Z shell home page.

¢ IBM trial software: Build your next development project with software for download directly from
developerWorks.

Discuss

® zsh wiki: Collaborate, discuss, and share your Zsh expertise.

® Participate in the AIX and UNIX forums, developerWorks blogs, and get involved in the developerWorks
community.

About the author

Martin Streicher is the Chief Technology Officer of McClatchy Interactive and the Editor-in-Chief of
Linux Magazine . Martin holds a Masters of Science degree in computer science from Purdue
University and has been programming UNIX-like systems since 1986. You can reach Martin at
martin.streicher@gmail.com.

Share this....

= Digg thisstory m" del.icio.us J+ Slashdot it!

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries. Other company,
product, or service names may be trademarks or service marks of others.

11 of 11 03/27/2009 04:45 PM

