Speaking UNIX, Part 5: Data, data everywhere http://www.ibm.com/developerworks/aix/library/au-speak...

Speaking UNIX, Part 5: Data, data everywhere

Move and manage files stored across multiple systems

Level: Intermediate

Martin Streicher (martin.streicher@gmail.com), Chief Technology Officer, McClatchy Interactive

28 Nov 2006

Take a look at several techniques that illustrate how to move files among systems and how to keep
such far-flung data in sync.

In recent years, computer hardware has become ridiculously inexpensive. A gigabyte of hard disk space costs
US$0.50, a 19-inch flat-panel display for less than US$200, and a laptop that can run UNIX® costs less than
US$1000. Even specialized server hardware is priced as a commodity.

At such low, low prices, it's quite affordable for a medium- or large-sized organization to dedicate individual
pieces of hardware to unique tasks. Moreover, expanding compute capacity can be as easy as connecting the
machine to the network, copying a disk image to a new white box (a generic computer), and restarting. Of course,
there's no free lunch. Every computer requires a healthy diet of electricity, cool air, and love and affection.

One of the most common problems of managing large numbers of computers is how to keep so many systems
up-to-date and consistent. In some cases, you want the same version of an application deployed everywhere, lest
users be confused by inconsistent idiosyncrasies. Or, as another example, you probably want the same operating
system on each server that serves the same purpose. Predictability is good.

Even if you have only a laptop and a desktop computer, keeping just those two machines in sync can be a
daunting task. Today, you're on the road working on your portable computer. Yesterday, you tinkered from
your desktop. On both days, perhaps you uploaded or downloaded files from a central file server. With data
going and coming, you can quickly become confused about what's where.

In Part 5 of this series, let's look at a handful of techniques that can help keep explosions of files under control.

Tarred and forwarded

Obviously, the simplest way to maintain consistent data across multiple computers is to simply keep your files (a
spreadsheet, database, text files, and so on) with you. If you had physical access to every machine you use, you
could carry a portable disk, CD-RW, or large flash memory keychain and simply plug in the storage device
whenever you needed your files.

However, if a machine you use is remote or inaccessible, say, in your company's machine room in Boise, Idaho,
connecting the peripheral device isn't an option. Instead, you can make an archive of (some or all) your files,
connect to your local area network (LAN) or wide area network (WAN), copy the archive to its destination, and
restore the files to continue your work. (Moreover, you can use the archive as a simple backup to protect your
files in the event of disaster, such as leaving your computer in a taxi.)

On UNIX systems, the stalwart utility tar makes light work of building archives. The tar utility bundles one or
more files and directories into a single file, maintaining bytes, owners, permissions, file type, and station in the
file system hierarchy of the original files. The tar utility records your files verbatim on tape -- tar is definitely
an acronym for tape archiver.

For example, assume that you have a directory of miscellaneous files, as shown in Listing 1.

Listing 1. File directory

1of7 03/27/2009 04:41 PM

Speaking UNIX, Part 5: Data, data everywhere http://www.ibm.com/developerworks/aix/library/au-speak...

$ cd stuff

$ 1s -1R

drwxr-xr-x 2 mstreicher mstreicher 4096 Oct 12 19:11 css
-rwxr-xr-x 1 mstreicher mstreicher 91 Aug 17 2005 demo.rb
-rw-r--r-- 1 mstreicher mstreicher 111563 Oct 12 19:10 tech.pdf
./css:

total 16

-rw-r--r-- 1 mstreicher mstreicher 711 Mar 25 2006 style.css
-rw-r--r-- 1 mstreicher mstreicher 11353 Apr 10 2006 valid.css

To create an archive of the two files and the directory, run tar:

$ tar --create --verbose --gzip --file archive.tgz *
css/

css/style.css

css/valid.css

demo.rb

tech.pdf

The - -create option tells tar to create an archive; the - -verbose option generates a list of files that tar
has processed; the - -gzip option enables gzip-style compression, which shrinks the archive; and - - file
archive. tgz specifies the name of the archive.

The shell interprets the asterisk (*) as "any file" and, therefore, expands it to name the two files and directory. As
you can tell from the output immediately above, tar archives the css directory and recurses to archive that
directory's contents.

After running tar, the current directory contains a new file, archive.tgz:

$ 1s -1 archive.tgz
-rw-r--r-- 1 mstreicher mstreicher 105470 Oct 13 17:16 archive.tgz

You can now copy archive.tgz to another computer and use tar on the remote computer to extract what was
previously archived. In fact, the command line to restore the files is almost identical to the previous command
line. To extract the archive, use:

$ tar --extract --verbose --gunzip --preserve-permissions --file archive.tgz

This tar command extracts the contents of the archive.tgz tarball. The - -extract option is the opposite of
the - -create option; - -gunzip is the inverse of - -gzip, and - -preserve-permissions recreates
the permissions of the original files.

After running this command, the files you saved are restored intact, preserving the time stamp, permissions, and
file name. Also, the directory named css is recreated with its contents extracted in situ.

The tar utility has a multitude of options: - -create, - -extract, and - - List (which catalogs the .tar file
without expanding it). Other options (such as - -gzip and - -preserve-permissions) control how tar
creates the archive. See the tar man page for your version of UNIX for more details and the proper syntax for
each option.

Creating an archive, copying it to its destination, and extracting it is useful, but it can become laborious.
Additionally, if the archive is extremely large, you might not be able to store both the archive and its expanded
files. To save time and, if the source and destination computers are connected by a LAN or WAN, you can
combine the Secure Shell, SSH, and tar to archive, copy, and extract the files in one fell swoop. Here's how:

$ (cd ~/stuff; tar --create --gzip --file - *) | \
ssh destination tar --extract --gunzip --file --verbose -C stuff

20f 7 03/27/2009 04:41 PM

Speaking UNIX, Part 5: Data, data everywhere http://www.ibm.com/developerworks/aix/library/au-speak...

There's a lot going on in that command, so let's decompose it:

1. The parenthesized series of commands is called a subshell. Changes made in the subshell -- for example,
changing directory -- do not affect your command line, but it does affect the environment of the subshell.
Hence, the first phrase, (cd ~/stuff; tar --create --gzip --file - *),changesto the
directory ~/stuff, and then runs tar. Because the subshell is followed by a pipe, all the output of the
subshell is sent to the next command in the pipeline.

2. Like many other UNIX utilities, tar can write to and read from standard output (stdout) and standard
input (stdin), respectively. Both stdout and stdin are typically denoted as a hyphen (-). So, the
phrase - -create --file - createsthe archive on stdout.

3. The pipe (]) pipes all output of the subshell to ssh. This effectively transfers all the output from the source
computer to the destination computer.

4. Finally, the destination machine runs its own instance of tar to extract the archive. Here, however,
--extract --file - readsthe archive from standard input. The - C option forces the receiving tar
to change directory to stuff (in your remote home directory) before it begins any processing. The end
result is that the archive transmitted through ssh is unpacked in ~/stuff.

In one (somewhat lengthy) command, you archived, transferred, and extracted your archive. By the way, a near
transpose of the command line allows you to fetch and extract an archive created on the remote computer to your
local computer. Here is that solution, run from the local machine:

$ ssh destination cat archive.tgz | \
(cd ~/stuff; tar --extract --gunzip --file -)

The remote archive is opened on the remote machine, and the byte stream from cat is sent to a subshell that first
changes directory, and then it extracts the archive. (Adding -C ~/stuff to the tar command achieves the
same effect; the example just shows that subshells can consume input, too.)

You can use the same technique to mirror files on the same machine. Try something like:

tar --create --file - * | tar -C /path/to/directory --extract --file -

Copying is the sincerest form of flattery

The tar utility with ssh is a convenient method for transferring files from one machine to another. The tar
utility creates the archive, and sSh facilitates secure transfer of the archive.

Another technique is to use the innate abilities of the SSH to transfer files from one machine to another. sftp,
another "personality" of SSH, provides all the features of the File Transfer Protocol (FTP), yet protects file data
while in transit. (In general, the use of FTP is frowned upon, because it is insecure; however, public FTP sites are
one significant exception to the rule.)

If you've ever used FTP, s ftp is virtually identical. Simply type sTtp destination to connect to the
remote machine named destination , and run FTP commands such as cd, Lcd, mput, and mget to move
files back and forth.

Yet another way to transfer files between two machines is to use SCp, or secure copy. As its name implies, SCP
works much like plain old cp: It copies files from one place to another, either on the same machine or between
two machines.

For example, if you wanted to copy some files and directories to another directory on your local machine, you'd
run something like the code shown in Listing 2.

3of7 03/27/2009 04:41 PM

Speaking UNIX, Part 5: Data, data everywhere http://www.ibm.com/developerworks/aix/library/au-speak...

Listing 2. Copy files between two machines

$ 1s -1F

drwxr-xr-x 2 mstreicher mstreicher 4096 Oct 12 19:11 css/
-rwxr-xr-x 1 mstreicher mstreicher 91 Aug 17 2005 demo.rb*
-rw-r--r-- 1 mstreicher mstreicher 111563 Oct 12 19:10 tech.pdf

$ cp -pr * /home/joe/stuff

§ 1s -1F /home/joe/stuff

drwxr-xr-x 2 mstreicher mstreicher 4096 Oct 12 19:11 css/
-rwxr-xr-x 1 mstreicher mstreicher 91 Aug 17 2005 demo.rb*
-rw-r--r-- 1 mstreicher mstreicher 111563 Oct 12 19:10 tech.pdf

In this example, Cp -pr recursively copies all files and directories to /home/joe/stuff. The - r causes recursion;
the - p preserves the time stamps of the files.

You can do the exact same thing (that is, copy locally) with scp:

$ scp -pr * /home/joe/stuff

But if you specify a remote system, SCP copies the files over the network:

$ scp -pr * destination:/home/joe/stuff

Assuming that /home/joe/stuff exists on the destination machine and is writable by you, the two files and the
directory are copied verbatim to the remote machine. Like Cp, SCp recognizes - p for preserve and - for
recurse.

SCPp is easy to use, especially if you establish a private-public key pair to avoid typing your password for each
ssh/scp/sftp operation.

However, scp does have one peculiarity to be aware of. Assume that you have a directory named doc in your
home directory and you want to copy it to a remote system. Furthermore, you want the contents of ~/doc to
replace the contents of the remote doc directory whenever a file or directory have the same name. The command
to use would be something like this:

$ scp -pr ~/doc destination:/path/to/doc

Notice that the path on the destination machine lacks a trailing slash (/). Scp interprets the path as "copy the

contents of the ~/doc directory to the directory /path/to/doc on the destination machine." As with Cp, remote files
and directories that have the same name as the local files and directories are overwritten; unique files on the
remote system are left untouched.

If you add a trailing slash, however, as in:

$ scp -pr ~/doc destination:/path/to/doc/
scp interprets the latter path as "copy the directory ~/doc to the directory /path/to/doc/." So, instead of

overwriting the contents of the remote directory, the local doc directory is copied into the remote directory.

The trailing slash is not an error. At times, you might want to use it; at other times, you might not, depending on
your intent.

Keeping in sync

4 of 7 03/27/2009 04:41 PM

Speaking UNIX, Part 5: Data, data everywhere http://www.ibm.com/developerworks/aix/library/au-speak...

scp is exceedingly useful, because it mimics Cp so closely. tar and ssh are slightly more complex, but they
preserve file metadata, such as owner and permissions.

But both tar and scp fail to synchronize the contents of the local and remote directories. For example, if you
changed one file on the local system and another and a different file on the remote system, you'd have to run two
SCp commands to make a working mirror. Now imagine that you have handfuls of changed files, many of them
named identically. Very quickly, you can see just how complicated synchronization can become.

Luckily, there's an amazing utility called rsync that synchronizes sets of files. Better yet, rsync transfers only
the data that's changed, minimizing the amount of data transferred.

Like tar, you can combine rsync with ssh to connect to remote systems and synchronize a local and remote
collection of files. Like SCp, you can use rsync to copy files locally. You can also use rsync to list files.

And best of all, rsync has options to make one directory a true mirror of another directory, using options to
delete files that don't exist in the original directory. Let's look at some examples:

$ rsync -e ssh --times *.txt destination:

This command copies all text files in the current working directory to your home directory on the machine
named destination. The -times option preserves the access, creation, and last modified time of each file.

$ rsync -e ssh --times --perms --recursive --delete doc destination:

This variation of rsync mirrors the local doc directory in your home directory on destination. File times are
maintained, as are permissions, and extraneous files (that is, files in the remote directory that do not exist within
the local directory) are removed.

Because rsync can make some significant changes, you might prefer to add the - -dry - run option to the
command line to preview what rsync plans to do. - -dry-run does not make any changes -- it merely shows
you what happens, as shown in Listing 3 below.

Listing 3. Preview what rsync does

$ rsync -e ssh --dry-run --times --perms --recursive --delete bin destination:
building file list ... done
bin/

skipping non-regular file "bin/HTML.pl"
skipping non-regular file "bin/Quark.pl"
bin/Responses/

bin/Responses/DBI.pm
bin/Responses/Response.pm

skipping non-regular file "bin/XML.pl"
bin/backupdca.sh

bin/lib/

bin/report.pl

bin/report.txt

sent 724 bytes received 108 bytes 554.67 bytes/sec
total size is 168879 speedup is 202.98

rsync has a multitude of options:

® -aisinvaluable, as it's shorthand for - -group --owner --perms --times --devices
--links --recursive. - -devices recreates device files, and - - Links copies symbolic links as
symbolic links rather than copying what the symbolic link points to.

® --update prevents rsync from overwriting newer files. If the remote system has a newer file than the
local system, the remote system's file is retained.

® Try --verbose to watch rsync in action.

50f7 03/27/2009 04:41 PM

Speaking UNIX, Part 5: Data, data everywhere http://www.ibm.com/developerworks/aix/library/au-speak...

6 of 7

Again, read the man page for rsync to learn more of its tricks. One significant feature specifically includes or
excludes files according to criteria you define.

Data, data everywhere

UNIX has been used in networked environments for more than 20 years. In that time, the hardware has changed
dramatically, but much of the software remains the same, as do the challenges for users and system
administrators. One of the biggest problems, keeping track of all the data, grows worse as disk capacity grows to
gargantuan sizes. Utilities such as tar, sftp/scp, and rsync can tame even the most savage disk.

Part 6 of this series takes a look at automation -- yet another way to save time and effort and reduce human error.

Resources

Learn

Speaking UNIX: Check out other parts in this series.

zsh Mailing List Archive: Read this mailing list to learn more Z shell tricks and tips.

AIX and UNIX: Visit the developerWorks AIX and UNIX zone to expand your UNIX skills.

New to AIX and UNIX: Visit the New to AIX and UNIX page to learn more about AIX and UNIX.

developerWorks technical events and webcasts: Stay current with developerWorks technical events and
webcasts.

AIX 5L Wiki: A collaborative environment for technical information related to AIX.

Technology bookstore: Browse this site for books and other technical topics.

Podcasts: Tune in and catch up with IBM technical experts.

Get products and technologies

Z shell: Download the latest version of Z shell from the Z shell home page.

IBM trial software: Build your next development project with software for download directly from
developerWorks.

Discuss

zsh : Collaborate, discuss, and share your zsh expertise on the zsh wiki.

Participate in the AIX and UNIX forums:

© AIX 5L -- technical

AIX for Developers Forum
Cluster Systems Management
IBM Support Assistant
Performance Tools -- technical
Virtualization -- technical

O O O O O

03/27/2009 04:41 PM

Speaking UNIX, Part 5: Data, data everywhere http://www.ibm.com/developerworks/aix/library/au-speak...

© More AIX and UNIX forums

® Participate in the developerWorks blogs and get involved in the developerWorks community.

About the author

Martin Streicher is the Chief Technology Officer of McClatchy Interactive and the Editor-in-Chief of
Linux Magazine . Martin holds a Masters of Science degree in computer science from Purdue
University and has been programming UNIX-like systems since 1986. You can reach Martin at
martin.streicher@gmail.com.

Share this....

= Digg thisstory m® delicio.us #+ Slashdot it!

UNIX is a registered trademark of The Open Group in the United States and other countries. Other company,
product, or service names may be trademarks or service marks of others.

7 of 7 03/27/2009 04:41 PM

