Speaking UNIX, Part 10: Customize your shell http://www.ibm.com/developerworks/aix/library/au-speakingunix10/inde...

Speaking UNIX, Part 10: Customize your shell

Persist your preferences to recreate your shell environment

Level: Intermediate

Martin Streicher (martin.streicher@gmail.com), Chief Technology Officer, McClatchy Interactive

29 May 2007

You can customize the UNIX® shell to save time, to save typing, and to adapt to your style of work.
Shell startup files capture your preferences and recreate your shell environment session after session,
even machine to machine.

If you work with a tool long enough, you master its purpose. Moreover, the tool becomes an extension of
yourself. Think of Gustav Klimt's brush, Louis Armstrong's trumpet, and Mark Twain's turn of phrase. If you're a
virtuoso, your "tools of the trade" effortlessly channel your intent, spirit, and expression to your medium.

By now, I hope your skills have reached those of a UNIX® acolyte. You practice your command-line katas. You
consult the omniscient oracle of man when you crave knowledge. And you craft command combinations that
perform sheer alchemy on data. You're at ease at the command line, and the shell feels comfortable and familiar.

The next stage in your apprenticeship, Grasshopper, is to make the shell your own.

The great and mighty shell
You've already seen many techniques to customize your shell environment:

® You can choose the UNIX shell you'd like to use. The Bourne shell is a stalwart; others, such as the Z shell,
offer novelties and conveniences that you may find helpful.

To find the shells available on your UNIX system, use the command cat /etc/shells. To change
your shell to any of the shells listed, use the chsh command. Here's an example to change to /bin/zsh, the
Z shell. (Type the text shown in bold.)

$ cat /etc/shells
/bin/bash

/bin/csh

/bin/ksh

/bin/sh

/bin/tcsh

/bin/zsh

$ chsh -s /bin/zsh

® You can create short aliases to stand in for lengthy commands.
® Environment variables, such as PATH (which controls where to search for programs) and TZ (which
specifies your time zone), persist your preferences and affect all the processes you launch.

PATH is especially useful. For example, if you want or need to run a local, enhanced version of Perl, you

can alter your PATH to prefer /usr/local/bin/perl instead of the (typical) standard version found in
/usr/bin/perl.

UNIX applications often use environment variables for customization, too. For instance, if your terminal

(or emulator) is capable, you can colorize the output of 1s (list directory contents) with the environment
variables CLICOLOR and LSCOLORS.

® You can retain and recall command lines through the shell's built-in command history. Command histories
conserve typing, allowing you to re-run an earlier command. Many shells also allow on-the-fly
modification of a previous command to create a new command. For example, the Bash shell uses the caret

1of8 03/27/2009 04:31 PM

Speaking UNIX, Part 10: Customize your shell http://www.ibm.com/developerworks/aix/library/au-speakingunix10/inde...

(™) character to perform substitutions:

$ 1s -1 heroes.txt

-rwW-r--r-- 1 strike strike 174 Mar 1 11:25 heroes.txt
$ “heroes”villains

1s -1 villians.txt

villians.txt

Here, the quirky command line “heroes”villains substitutes the word villains for heroes in the
immediately previous command (the default, if a numbered command in the history list isn't provided) and
runs the result, Ls -1 villians.txt. Consult your shell's documentation for its syntax for
command-line substitutions.

® You can write shell scripts to (re-)perform complex operations if the existing UNIX utilities and your shell's
built-in features lack a feature you'd like to use regularly.

As you'll see in an upcoming "Speaking UNIX" article, you can also download and build an enormous number of
additional UNIX utilities, typically provided as open source. In fact, with Google or Yahoo! and a few minutes of
time, you can usually and readily find and download a suitable solution rather than create your own. (Be lazy!
Spend your bonus free time watching clouds.)

Of course, with so many options for fine-tuning your shell, it would be nice if you could persist your preferences
and re-use those settings time and again, from shell to shell (say, in different X terminal windows), session to
session (when you log out and return to log in again), and even across multiple machines (assuming that you use
the same shell on multiple platforms).

Shell startup scripts provide this endurance. When a shell starts and as it terminates, the shell executes a series of
scripts to initialize and reset your environment, respectively. Some startup scripts are system-wide (your systems
administrator configures them), and others are yours to customize freely.

Startup scripts aren't like Microsoft® Windows® INI files. As the name implies, startup scripts are true shell
scripts—those little programs you write to achieve some work. In this case, the shell scripts run whenever the shell
starts or terminates and affect the shell environment.

Start me up!

Typically, each shell provides for several shell startup scripts, and each shell dictates the order in which the scripts
run. At a minimum, you can expect a system-wide startup file and a personal (per-user) startup file. Think of the
entire shell startup sequence as a kind of cascade: The effects of running (potentially) multiple scripts are
cumulative, and you can negate or alter parameters set early in the sequence in a subsequent script.

For example, your systems administrator might set a helpful default shell prompt for the entire
system—something that includes your user name, current working directory, and command history number, for
instance—in the system-wide shell startup file. However, you can override this file by resetting the shell prompt
to your liking in your own startup script. Otherwise, if you don't alter a system-wide setting, it persists in your
shell and environment.

Typically, the earliest startup scripts are system-wide, such as /etc/profile, and your systems administrator
manages them. System-wide startup files aren't intended as an intrusion, but rather facilitate the use of resources
specific to that system. For example, if your system administrator prefers that you use a newer version of the
Secure Shell (SSH) utility because it addresses a known security flaw, he or she might set each user's initial PATH
variable to /ust/local/bin:/bin:/usr/bin, which prioritizes executables found in /ust/local/bin. (If the command isn't
found in /usr/local/bin, the shell continues its scan in /usr/bin.) System-wide startup files are also used to name
printers, display bulletins about planned downtime, and provide new users with reasonable shell defaults. (Don't
haze the newbies.)

After the system-wide script (or scripts) runs, the shell runs user-specific startup scripts. The per-user files are the
appropriate places to keep your favorite aliases, environment settings, and other preferences.

2 of 8 03/27/2009 04:31 PM

Speaking UNIX, Part 10: Customize your shell http://www.ibm.com/developerworks/aix/library/au-speakingunix10/inde...

30f 8

Planning for the big Bash

The number and names of the shell startup scripts vary from one shell to another. Let's look at the startup
sequence of the Bash shell, /bin/bash. The Bash shell is found on all flavors of UNIX and Linux®, and it is
typically the default shell of new systems and users. It's also representative of many other shells and thus serves as
a good demonstration. (If you use another shell, consult its documentation or man page for the names and
processing order of its startup scripts.)

Bash searches for six startup scripts, but each of those scripts is optional. Even if all six scripts exist and are
readable, Bash executes only a subset of the six in any situation.

Bash first executes /etc/profile, the system-wide startup file, if that file exists and the user can read it. After
reading that file, Bash looks for ~/.bash_profile, ~/.bash _login, ~/.profile, and ~/.bashrc—in that order—where ~
is the shell's abbreviation for the user's home directory (also available as SHOME). If you exit Bash, the shell
searches for ~/.bash_logout.

Which of the six files executes depends on the "mode" of the new shell. A shell can be a login shell, and it might
or might not be interactive. (A login shell is also an interactive shell; however, you can force a non-interactive
shell to behave like a login shell. More on that later.)

In UNIX days of yore (a scant two decades ago), you typically accessed a UNIX machine through a dumb
terminal. You would type your user ID and password at the login prompt, and the system would spawn a new
login shell for your session. In this environment, a login shell was differentiated from other shell instances (such
as those running a shell script) by name: The process name of each login shell was prefixed with a hyphen, as in
-bash. This special name—a longtime UNIX artifact—tells the shell to run any special configuration for login.

An interactive shell is easier to explain: A shell is interactive if it responds to your input (standard input) and
displays output (to standard out). Today, the X terminal has replaced the dumb terminal, but the convention and
paradigm of shell modes remain. Usually, X terminal spawns Bash as -bash, which forces Bash to perform the
login startup sequence.

In the case of Bash, an interactive login shell runs /etc/profile, if it exists. (A non-interactive shell also runs
Jetc/profile if Bash is invoked as bash --10gin.) Next, the interactive login shell looks for ~/.bash_profile
and executes this script if it exists and is readable. Otherwise, the shell continues, trying to execute ~/.bash_login.
If the latter file doesn't exist or is unreadable, Bash finally attempts to execute ~/.profile. Bash runs only one
personal startup file—the startup sequence stops immediately afterward. When a Bash login shell exits, it executes
~/.bash_logout.

If the Bash shell is interactive but not a login shell, Bash attempts to read ~/.bashrc. No other files are executed. If
the Bash shell is non-interactive, it expands the value of the BASH ENYV environment variable and executes the
file named.

Of course, you can provide additional settings by calling your own scripts from within Bash's standard scripts.
The special shell abbreviation . (or its synonym SOUrce) executes another shell script. For example, if you
want to share the settings in ~/.bashrc between interactive login shells and interactive non-login shells, place the
command:

. ~/.bashrc

in ~/.bash_profile. When the shell encounters the dot command, it immediately executes the named shell script.

Peering into the shell

The best way to explore the startup sequence is to create some simple shell startup files. For example, if you run
the ssh farfaraway 1s command, is the remote shell that SSH spawns on the remote system named
farfaraway a login shell? An interactive shell? Let's find out.

03/27/2009 04:31 PM

Speaking UNIX, Part 10: Customize your shell http://www.ibm.com/developerworks/aix/library/au-speakingunix10/inde...

4 of 8

Listings 1, 2, 3, and 4 show sample /etc/profile, ~/.bash_profile, ~/.bashrc, and ~/.bash_logout files, respectively.
(If these files already exist, make backups before you continue with this exercise. You need superuser privileges on
your machine to change /etc/profile.) Use your favorite text editor to create the files as shown.

Listing 1 shows a sample /etc/profile script. This file is the first startup file to run (if it exists and is readable).

Listing 1. Sample /etc/profile file

echo "Executing /etc/profile."
PATH="/bin:/sbin:/usr/bin:/usr/sbin"
export PATH

Listing 1 echoes a message as the script begins and sets a minimal PATH variable. Again, this file runs if the shell
is an interactive login shell. For example, launch a new X terminal. You should see something like this:

Last login: Tue Apr 17 21:06:23 on ttypl
Executing /etc/profile

(Interactive, login shell)

Executing /Users/strike/.bash_profile
(Interactive, login shell)

Including /Users/strike/.aliases

strike @ blackcat 1 §

Good! That's the predicted sequence when launching a new login shell in an X terminal. Notice the shell prompt:
It reflects the user name, the short hostname (everything before the first dot), and the command number.

If you type Logout or exit at the prompt, you should see this:

strike @ blackcat 31 $ logout
Executing /Users/strike/.bash_logout
(Interactive, login shell)

As described, the interactive login shell runs ~/.bash_logout.

Listing 2 shows a sample ~/.bash_profile file. This file is one option for customizing your shell at startup.

Listing 2: Sample ~/.bash_profile file

echo "Executing $HOME/.bash_profile"
echo '(Interactive, login shell)'

PS1="\u @ \h \# \$ '
export PS1

PAGER=/usr/bin/less
export PAGER

.aliases

Next, let's see what happens when you launch a new shell from the prompt. The new shell is interactive, but it's
not a login shell. According to the rules, ~/.bashrc is the only file expected to run.

strike @ blackcat 1 $ bash
Executing /Users/strike/.bashrc
(Interactive shell)

blackcat:~ strike$

And, in fact, ~/.bashrc is the only file to execute. The proof is in the prompt—the prompt at bottom is the default
Bash prompt, not the one defined in ~/.bash_profile.

03/27/2009 04:31 PM

Speaking UNIX, Part 10: Customize your shell http://www.ibm.com/developerworks/aix/library/au-speakingunix10/inde...

To test the logout script, type exit (you cannot type Logout in a non-login shell). You should see:

blackcat:~ strike$ exit

exit

Executing $HOME/.bash_logout
(Interactive, login shell)
strike @ blackcat 2 §

As an interactive login shell terminates, it executes ~/.bash _logout. You might use this feature to remove
temporary files, copy files as a simple method of backup, or perhaps even launch rsync to distribute any changes
made in this most current session.

Listing 3 shows a sample ~/.bashrc file. This file is the initialization file for non-interactive Bash shell instances.

Listing 3: Sample ~/.bashrc file

echo "Executing $HOME/.bashrc"
echo "(Interactive shell)"

PATH="/usr/local/bin:$PATH"
export PATH

Here's another experiment: What kind of shell do you get when you run SSH? Let's try two variations. (You can
simply use SSH to get back to your local machine—it works the same as if you were running SSH from a remote
machine.) First, use SSH to log in to the remote machine:

strike @ blackcat 1 $ ssh blackcat
Last login: Tue Apr 17 21:17:35 2007
Executing /etc/profile

(Interactive, login shell)

Executing /Users/strike/.bash_profile
(Interactive, login shell)

Including /Users/strike/.aliases
strike @ blackcat 1 §

As you might expect, running SSH to access a remote machine launches a new login shell. Next, what happens
when you run a command on the remote machine? Here's the answer:

strike @ blackcat 3 $ ssh blackcat 1s
Executing /Users/strike/.bashrc
(Interactive shell)

villians.txt

heroes.txt

Running a command remotely using SSH spawns a non-login interactive shell. Why is it interactive? Because the
standard input and the standard output of the remote command are tied to your keyboard and display, albeit
through the magic of SSH.

Listing 4 shows ~/.bash_logout. This file runs as the shell terminates.

Listing 4: Sample ~/.bash_logout file

echo "Executing $HOME/.bash_logout"
echo "(Interactive, login shell)"

Helpful tips for startup files

The more you use the shell, the more you can benefit from persisting your preferences in startup files. Here are
some helpful tips and suggestions for organizing your Bash settings. (You can apply similar strategies to other

5o0f 8 03/27/2009 04:31 PM

Speaking UNIX, Part 10: Customize your shell http://www.ibm.com/developerworks/aix/library/au-speakingunix10/inde...

shells.)

® [f you have settings (for example, PATH) that you want to use in every shell (regardless of its mode), place
those settings in ~/.bashrc and use source to access the file from ~/.bash_profile.

® [If you have accounts on multiple machines (and your home directory isn't shared among them through the
Network File System [NFS]), use rsync to keep your shell startup files in sync across all machines on the
network.

® [f you apply certain preferences depending on the host you're using—say, a different PATH if one system
has special resources—place those settings in a separate file and use Source to access it during shell
startup. If you choose to use rsync to manage your files, omit the host-specific file from the file distribution
list.

Of course, you can also create a global script and use conditionals and the environment variable
HOSTNAME to choose the appropriate settings. (HOSTNAME is set automatically by the shell and captures
the fully qualified host name.) For example, here's a useful snippet commonly found in startup files:

case $HOSTNAME in
lab.area5l.o0rg)
PATH=/opt/rocketscience/bin:$PATH
PS1='\u @ \h \# \§ '
export $PS1;;

alien.area5l.org)
PATH=/opt/alien/sw/bin:$PATH;;

saucer¥*)
PATH=/opt/saucer/bin:$PATH
PAGER=1ess
export $PAGER;;

*)
PATH=/usr/local/bin:$PATH
esac

export $PATH

The construct here is a switch statement to compare the value of SHOSTNAME against four possible
values: lab.area51.org, alien.area51.org, a pattern that matches any hostnames that begin with the literal
string saucer* (a hostname such as saucer-mars would match; a hostname such as sauce.tomato.org
would not), and everything else. Here, in the case of Bash, the asterisk (*) is interpreted as a shell operator,
not as a regular expression operator. When a match is made against one of the patterns, the statements
associated with that pattern execute. Unlike other switch statements, Bash's case runs one set of statements
only.

Finally, look at the shell startup files of other users for inspiration and to save perspiration. (Some users protect
these files and their home directory, though, which precludes you from browsing.) Does Joe have a cool, useful
prompt? Ask how to implement the same thing. Does Jeanette have extensive keyboard accelerators or a great
collection of environment variables to eke out special features from utilities? Chat with her about her about
recipes. The best source of ideas and code comes from experienced practitioners of the command line.

Customizing your shell

Tweakers and modders, unite! You can customize your shell extensively, and after you find a setting or series of
settings you like, save them in a startup file to re-use again and again. Use rsync or a similar tool to propagate
your environment from one machine to another.

Your lesson is done. Time for more katas.

Resources

Learn

6 of 8 03/27/2009 04:31 PM

Speaking UNIX, Part 10: Customize your shell http://www.ibm.com/developerworks/aix/library/au-speakingunix10/inde...

7 of 8

® Speaking UNIX: Check out other parts in this series.

® Check out other articles and tutorials written by Martin Streicher:
© Across developerWorks and IBM

® Search the AIX and UNIX library by topic:
© System administration

Application development
Performance

Porting

Security

Tips

Tools and utilities

Java™ technology

Linux

Open source

O O O 0O 0O O OO O ©

¢ AIX and UNIX: The AIX and UNIX developerWorks zone provides a wealth of information relating to all
aspects of AIX systems administration and expanding your UNIX skills.

® New to AIX and UNIX?: Visit the "New to AIX and UNIX" page to learn more about AIX and UNIX.

® AIX 5L™ Wiki: Discover a collaborative environment for technical information related to AIX.

® Safari bookstore: Visit this e-reference library to find specific technical resources.

® developerWorks technical events and webcasts: Stay current with developerWorks technical events and
webcasts.

® Podcasts: Tune in and catch up with IBM technical experts.

Get products and technologies

¢ IBM trial software: Build your next development project with software for download directly from
developerWorks.

Discuss

® Participate in the developerWorks blogs and get involved in the developerWorks community.

® Participate in the AIX and UNIX forums:

© AIX 5L—technical forum
AIX for Developers Forum
Cluster Systems Management
IBM Support Assistant
Performance Tools—technical
Virtualization—technical
More AIX and UNIX forums

O O O O O O

About the author

03/27/2009 04:31 PM

Speaking UNIX, Part 10: Customize your shell http://www.ibm.com/developerworks/aix/library/au-speakingunix10/inde...

Martin Streicher is the Chief Technology Officer of McClatchy Interactive and the Editor-in-Chief of
Linux Magazine . Martin holds a Masters of Science degree in computer science from Purdue
University and has been programming UNIX-like systems since 1986. You can reach Martin at
martin.streicher@gmail.com.

Share this....

= Digg thisstory m" del.icio.us #+ Slashdot it!

IBM, AIX, and AIX 5L are registered trademarks of International Business Machines Corporation in the United
States, other countries, or both. AIX is a registered trademark of IBM in the United States. Linux is a registered
trademark of Linus Torvalds in the United States, other countries, or both. Microsoft, Windows, and the Windows
logo are trademarks of Microsoft Corporation in the United States, other countries, or both. UNIX is a registered
trademark of The Open Group in the United States and other countries. Other company, product, or service names
may be trademarks or service marks of others.

8 of 8 03/27/2009 04:31 PM

