developerWorks. I

I$H@*%

Learn even more command-line tricks and operators

Skill Level: Intermediate

Adam T. Cormany (acormany@yahoo.com)
National Data Center Manager
Scientific Games Corporation

30 Sep 2008

Get a better understanding of all those "strange" characters UNIX® users are typing.
Learn how to use pipelines, redirections, operators, and more in UNIX.

So, you've worked on IBM® AIX® for a while now. You've learned a few of the basic
commands to help you maneuver through a directory structure, create and modify
files, see what processes are running, and maybe even administer users and the
system. That's great, but you want to understand what the UNIX® administrators
next to you are typing. It looks like a lot of commands interspersed with strange
symbols. Learn what | , >, >>, <, <<, [[and]], and many more symbols mean in
UNIX and Linux® as well as how to get the most out of operators such as &&, | | , <,
<=, and!=.

Pipeline

If you're familiar with UNIX, the pipeline, or pipe, is an integral part of everyday
processing. Originally developed by Malcolm Mcllroy, the pipeline allows you to
redirect the standard output (stdout) of one command to become the standard input
(stdin) of the following command in a single chained execution. Using the pipeline
isn't limited to one instance per execution. Quite often, the stdout of one command is
used as stdin of the following command, and the subsequent stdout is redirected yet
again as stdin to another command and so on.

For example, one of the first things most UNIX administrators do on their systems
during troubleshooting or daily checks is look at processes running currently on the

I$H@*%
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 21

mailto:acormany@yahoo.com
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

system. Listing 1 shows such a check.

Listing 1. Example of a daily process check

ps —ef
u D PI D PPID C STI ME TTY TIME CVD

r oot 1 0O O Jul 27 - 0:05
letclinit

r oot 53442 151674 0 Jul 27 - 0:00
[usr/ sbi n/ sysl ogd

r oot 57426 1 0 Jul 27 - 0:00
[usr/1ib/errdenmon

r oot 61510 1 0 Jul 27 - 23:55
/usr/sbin/syncd 60

r oot 65634 1 0 Jul 27 - 0:00
/usr/ ccs/ bi n/ shl ap64

r oot 82002 110652 0 Jul 27 - 0:24

/usr/ | pp/ X211/ bi n/ X -x abx
-x dbe -x GX -D /usr/lib/X11//rgb -T -force :0
-auth /var/dt/A: 0-Sfldva

r oot 86102 1 0 Jul 27 - 0:00
/fusr/lib/methods/ssa daenmon -1 ssa0

root 106538 151674 0 Jul 27 - 0:01
sendnmai | : accepti ng connections

root 110652 1 0 Jul 27 - 0:00
/usr/dt/bin/dtlogin -daenon

root 114754 118854 0 Jul 27 - 20:22 dtgreet

root 118854 110652 0 Jul 27 - 0:00 dtlogin
<: 0> - daenon

root 131088 1 0 Jul 27 - 0:07

/usr/atrialetc/lockngr

-a /var/admatria/alnd -q 1024 -u 256 -f 256
root 147584 1 0 Jul 27 - 0:01
[usr/sbin/cron
root 155816 151674 0 Jul 27 - 0:04
[usr/ sbi n/ port map
root 163968 151674 0 Jul 27 - 0:00
[usr/ sbi n/ gdaenon
root 168018 151674 0 Jul 27 - 0:00
/usr/sbin/inetd
root 172116 151674 0 Jul 27 - 0:03
[usr/ sbi n/ xnt pd
root 180314 151674 0 Jul 27 - 0:19
[usr/ sbi n/ snnpm bd
root 184414 151674 0 Jul 27 - 0:21
/usr/ sbi n/ ai xnm bd
root 188512 151674 0 Jul 27 - 0:20
/usr/ sbi n/ host m bd
root 192608 151674 0 Jul 27 - 7:46
/usr/ sbi n/ muxat nd
root 196718 151674 0 11:00: 27 - 0:00
/usr/ sbin/rpc. mountd
root 200818 151674 0 Jul 27 - 0:00
[usr/sbin/biod 6
root 213108 151674 0 Jul 27 - 0:00
[usr/sbin/nfsd 3891
root 221304 245894 0 Jul 27 - 0:05
/ bi n/ nsrexecd
daenon 225402 151674 0 11:00: 27 - 0:00
/usr/sbin/rpc.statd
root 229498 151674 0 11:00: 27 - 0:00
/usr/sbin/rpc. | ockd
root 241794 151674 0 Jul 27 - 0:51
/usr/1ib/netsvc/yp/ypbind
root 245894 1 0 Jul 27 - 0:00

I$H@*%
Page 2 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

/ bi n/ nsr execd

root 253960 1 0 Jul 27 - 0:00
./ nf | m_manager
root 274568 151674 0 Jul 27 - 0:00
[usr/sbin/sshd -D
root 282766 1 0 Jul 27 [ft0O 0:00
/usr/sbin/getty /dev/consol e
root 290958 0 Jul 27 - 0:00
/usr/| pp/ di agnosti cs/ bi n/ di agd
root 315646 151674 0 Jul 27 - 0:00
/usr/sbin/lpd
root 319664 1 0 Jul 27 - 0:00
/usr/atrialetc/al bd_server
root 340144 168018 0 12:34:56 - 0:00
rpc. ttdbserver 100083 1
root 376846 168018 0 Jul 30 - 0:00 rlogind
cormany 409708 569522 0 19:29:27 pts/1 0:00 -ksh
root 569522 168018 0 19:29:26 - 0:00 rlogind
cormany 733188 409708 3 19:30:34 pts/1 0:00 ps -ef
root 749668 168018 0 Jul 30 - 0:00 rlogind

The listing of the processes currently running on a system can be simple, as shown
in Listing 1; however, most production systems run several more processes that
make the output of ps much longer. To shorten the list to what you're looking for,
redirect the standard output of ps —ef using a pipeline to gr ep to search for exactly
what you want to see. Listing 2 shows the process list from Listing 1 redirected to

gr ep to search for the strings "rpc" and "ksh."

Listing 2. Redirecting the process list to grep

ps —ef | grep —E "rpc| ksh"

root 196718 151674 0 11:00: 27 - 0:00
/usr/sbin/rpc. mountd
daenon 225402 151674 0 11:00: 27 - 0:00
/usr/sbin/rpc.statd
root 229498 151674 0 11:00: 27 - 0:00
[usr/sbin/rpc. | ockd
root 340144 168018 0 12:34:56 - 0:00
rpc.ttdbserver 100083 1
cormany 409708 569522 0 19:29:27 pts/1 0:00 -ksh
cormany 733202 409708 0 19:52:20 pts/1 0:00 grep -E

rpc| ksh

Using the pipeline can be much more complicated when you redirect stdout to stdin
several times. In the following example, the previous ps and gr ep example is
expanded to pipeline the stdout to another gr ep to exclude any previous strings
found that includes "grep" or "ttdbserver." When the final gr ep operation has
finished, the stdout is redirected again using a pipeline to an awk statement to print
any of the processes found with a process identifier (PID) larger than 200,000:

ps —ef | grep —E "rpc| ksh" | grep -VvE
"grep|rpc.ttdbserver"

awk -v _MAX_PI D=200000 '{if ($2 > _MAX PID) {print "PID
for

process", $8,"is greater than", _MAX PID}}"

I$H@*%
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 21

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

PID for process /usr/shin/rpc.statd is greater than 200000
PID for process /usr/shin/rpc.lockd is greater than 200000
PID for process -ksh is greater than 200000

Figure 1 provides a graphical representation of the command's stdout redirecting to
stdin for the subsequent command.

Figure 1. Pipeline example

Stdout —/ Output of . .
-E ksh
ps & | command ALl S s
lStdnul
grep -vE “grep | rpc. ttdbserver | Stdin Output of

command

lsmaui

awk -v _MAX_PID=200000 " {if ($2 = _MAX_PID) {print

Output of !
“PID for process” |, $8, “is greater than”, _MAX_PID} }'

command

Results

Data redirection with >, >>, <, and <<

Another important aspect of executing commands from the command-line interface
(CLI) is the ability to write various outputs to a device or to read input into a
command from another device. To write the output of a command, append the
greater-than symbol (> or >>) and the target file name or device desired after the
command to be executed. If the target file doesn't exist and you have Write
permissions to the target directory, > and >> create the file with permissions of your
umask and write the command's output to the newly created file. If, however, the file
does exist, > attempts to open the file and overwrite the entire contents. If you would
rather append to the file, simply use >>. Think of it as the flow of output data moving
from the command on the left moving to the destination file on the right (that is,
<cmd> -> <out put > -><fil e>).

I$H@*%
Page 4 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

The following example executes the ps —ef sample shown in the section,
"Pipeline," and redirects the output to a file named ps_out :

ps —ef | grep —E "rpc| ksh" > ps_out
The following code executes the earlier extended pipeline example and redirects the

output to the same file—ps_out—»but appends to the current data:

ps —ef | grep -E ' rpc|ksh" | grep -vE
grep|rpc ttdbserver"
-v _MAX_PI D=200000 '{if ($2 > _MAX_PID) {print "PID
for
process", $8,"is greater than", _MAX_PID}}' >> ps_out

Listing 3 shows the output from the last two redirections.

Listing 3. Output from subsequent redirections

cat ps_out

root 196718 151674 0 11:00: 27 - 0:00

/usr/sbin/rpc. mountd
daenon 225402 151674 0 11:00: 27 - 0:00

/usr/sbin/rpc.statd

root 229498 151674 0 11:00: 27 - 0:00
/usr/sbin/rpc. | ockd

root 340144 168018 0 12:34:56 - 0:00
rpc.ttdbserver 100083 1
cormany 409708 569522 0 19:29:27 pts/1 0:00 -ksh
cormany 733202 409708 0 19:52:20 pts/1 0:00 grep -E

rpc| ksh

PID for process /usr/shin/rpc.statd is greater than 200000
PID for process /usr/sbhin/rpc.lockd is greater than 200000
PID for process -ksh is greater than 200000

When redirecting output with > alone, only the stdout of the command is redirected.
Keep in mind that with computing, there is stdout as well as stderr: The former is
represented as 1, while stderr is 2. Redirecting output in UNIX is no different. Simply
place the desired output type before the > (for example, 1>, 2>) to tell the shell
where to route the output.

Listing 4 attempts to list files fileA.tar.bz2 and fileC.tar.bz2. Unfortunately, as shown
in the first command (I s), fileC.tar.bz2 doesn't exist. Thankfully, we remembered to
separate stdout into Is.out and stderr into Is.err.

Listing 4. Listing the files fileA.tar.bz2 and fileC.tar.bz2

l's
ileA tar.bz2 fileAA tar.bz2 fileB.tar.bz2
ileBB.tar.bz2

I$H@*%
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 21

pipe.html
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

#1ls fileA tar.bz2 fileC tar.bz2 1> Is.out 2> Is.err

cat |s.out
fileA tar.bz2

cat Is.err
I's: 0653-341 The file fileC. tar.bz2 does not exist.

The same rules apply in AIX with > and >> on stdout and stderr. For example, the
same output files can be used for future tests, as Listing 5 shows.

Listing 5. Using output files for future tests

ls fileB.tar.bz2 fileD.tar.bz2 1>> |s.out 2>> Is.err

at | s.out
eA. tar.bz2
eB.

C
fil
fil tar.bz2

t Is.err
0653-341 The file fileC tar.bz2 does not exist.
0653-341 The file fileD.tar.bz2 does not exist.

ca

I's

I's
There are times when you may need to have both stdout and stderr written to the
same file or device. You can do this in either of two ways. The first method is to
direct 1> and 2> to the same file:

ls fileA tar.bz2 fileC tar.bz2 1> |s.out 2> |s.out

cat |s.out
fileA tar.bz2
I's: 0653-341 The file fileC. tar.bz2 does not exist.

The second method is a simpler and quicker way to accomplish the same thing and
is used more frequently by experienced UNIX users:

1s fileA tar.bz2 fileC. tar.bz2 > |s.out 2>&1

cat |s.out
fileA tar.bz2
I's: 0653-341 The file fileC.tar.bz2 does not exist.

Let's break the statement down. First,| s fileA tar.bz2 fileC tar.bz2is
executed. The stdout is redirected to Is.out with > | s. out , and stderr is redirected
to the same file to which stdout is redirected (Is.out) with 2>&1.

Remember that you can redirect output to files as well as other devices. You can
redirect data to printers, floppy disks, Terminal Types (TTYs), and various other
devices. For example, if you wanted to send a message to a single user on all
sessions (or TTYs), you could just loop through who and redirect a message to the
TTYs if you have adequate permissions, as shown in Listing 6.

I$H@*%
Page 6 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Listing 6. Redirecting amessagetoa TTY

for _TTY in '"who | grep "cormany” | awk '{print $2}"’
do

_TTY="/dev/ ${_TTY}"

echo "Sendi ng nessage to cormany on ${ TTY}"

echo "Test Message to cormany@{_TTY}" > ${ _TTY}
done

VVVVVH

Sendi ng nmessage to cormany on /dev/pts/13
Test Message to cormany@ dev/ pts/ 13
Sendi ng nmessage to cormany on /dev/pts/14

Stdin, not stdout

Although using > and >> seems a relatively easy concept for most to pick up, it's
common for others to have difficulties using the less-than symbols (< and <<). When
thinking of > and >>, it's easiest to visualize them as the flow of output data moving
from the command on the left to the destination file on the right. The same applies to
< and <<. Using <, you essentially execute a command with stdin already supplied.
Think of it as the data already provided supplied to the command on the left of the
data as stdin (that is, <cnd> <- <dat a>).

For example, say you want to send an e-mail of an ASCII text file to another user.
You could use a pipeline to redirect the stdout of cat to stdin of nai | (that is, cat
mail _file.out | mail —s "Here's your E-mail!"

acor many @ ahoo. com, or you could redirect the contents of the file to become
stdin for the mai | command:

mail —-s "Here's your E-mail!" acormany@ahoo. com <
mai |l _file.out

Using <<, also known as a here-document, can save some formatting time and is
easier on the processing time of the command execution. By using <<, the string of
text is directed to the command to execute as stdin, but you can continue to enter
information until the termination identifier has been reached. Simply type the
command following << and the termination identifier, type anything you want, and
end it with the termination identifier on a new line. Using the here-document allows
you to preserver whitespace, new lines, and so on.

For example, rather than typing five echo statements that UNIX would have to
process individually:

echo "Line 1"
Line 1

echo "Line 2"

I$H@*%
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 21

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

Li

#
Li

#
Li

#
Li

ne 2

echo
ne 3

echo
ne 4

echo

ne

5

"Li ne 3"

"Line 4"

"Line 5"

you could use the following code to replace the multi-echo statement, and UNIX
would only need to process a single execution:

VVVVVYVH

Li
Li
Li
Li
Li

cat << ECF
Li ne
Li ne
Li ne
Li ne
Li ne
ECF

ne
ne
ne
ne
ne

OabhwWNPE

GO WNE

To allow tabs to make everything look a bit neater in the shell script, simply place a
hyphen (-) between the << and the termination identifier:

cat <<- ATC
Li ne
Li ne
Li ne

GORrWNE

Listing 7 provides an example of how to combine a few items discussed in this
article so far.

Listing 7. Combining CLI

cat

redi rect _exanpl e

#! [usr/ bi n/ ksh

cat <<- ATC | sed "s/”~/ Redirect Exanple => /g" >> atc.out
This is an exanple of how to redirect

I$#H@*%

Page 8 of 21

© Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

stdout to a file as well as pipe stdout into stdin
of another command (i.e. sed), all done inside
a here-docunent.

Cool eh?
ATC

Now let's see what the script looks like with the redirection and pipeline.

./redirect_exanple

cat atc.out

Redi rect Exanmple => This is an exanple of how to redirect
Redi rect Exanple => stdout to a file as well as pipe
stdout into stdin

Redi rect Exanple => of another command (i.e. sed), all
done inside

Redi rect Exanpl e => a here-docunent.

Redi rect Exanmple =>

Redi rect Exampl e => Cool eh?

Subshells

Sometimes, you need to execute several commands together. For example, if you
want to perform a specific action in a different directory, you could use the code in
Listing 8.

Listing 8. Execute several commands at the same time

pwd
/ hone/ cor many

cd testdir
tar —cf Is_output.tar Is.out?

pwd
/ home/ cor many/ testdir

This works, but note that after the execution of theses steps, you're no longer in your
original directory. By placing the commands into their own subshell, they execute as
a single instance of the subshell. Listing 9 shows the same idea executed using a
subshell.

Listing 9. Execute several commands at the same time using a subshell

pwd
/ hone/ cor many

(cd testdir ; tar -cf |s_output.tar |s.out?)

pwd

I$H@*%
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 21

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

/ hone/ cor many

The test command, [], and [[]]

When writing a shell script or programming in any modern language, the ability to
evaluate expressions or values is essential to competent programs. UNIX has it
covered as always with the t est command. As the t est man page states, the

t est command evaluates expression parameters and, if the expression value is
True, returns a zero (True) exit value. For more information on the definition of t est
and all the available conditions, see the t est man page.

To use the t est command, simply provide the command with the appropriate flag
and file name. When t est has evaluated the expression, you're returned to a
command prompt, where you can verify the return code, as shown in Listing 10.

Listing 10. Verify return code

#1s -l

- WXT - XT - X 1 cormany atc 786 Feb 22 16:11
check _file

STWr--T1-- 1 cormany atc 0 Aug 04 20:57

enptyfile

test -f enptyfile
echo $7?
0

test -f badfil enane
echo $?
1

As stated in the definition, t est returns a zero exit value if the expression value was
True or a non-zero exit value (that is, 1). In Listing 10, the file emptyfile was found,
sot est returned O; the file badfilename was not found, so 1 was returned.

Another way to use the t est command is to place the expression to evaluate within
single brackets ([]). Using the t est command or replacing it with [] returns the
same value, as they are identical executions:

[-f enptyfile]
echo $?
0

[-f badfil ename]
echo $?
1

Using single brackets ([]) versus double brackets ([[]]) is a personal
preference and really depends on how you've been taught commands and shell

I$H@*%
Page 10 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

scripting. But keep in mind that there are some differences between the two
evaluations. Although[] and[[]] use the same test operators during
evaluation, they use different logical operators.

Operators

In ksh, the default shell used in AlX, as well as other shells used in UNIX and Linux,
it's important to know how to use test, logical, and substitution operators.

Test operators

When writing shell scripts, test operators are crucial to error checking and for
checking the status of files. The following test operators are just a few that you can
use in ksh as well as other standard UNIX shells:

e -d <file>: <file>isadirectory

e -e <flle> <fil e>exists

o -f <file>: <file>isaregularfile

e -n <string>:<string>isnot NULL

e -r <file>: The user has Read permissions to <fi | e>

e -s <file>: <fil e>sizeis greater than 0

* -w <file>: The user has Write permissions to <fi | e>

e -x <file>: The user has Execute permissionsto <fi | e>
e -z <string>: <string>isnull

e -L <file>: <file>isasymbolic link

Remember, in UNIX directories, devices, symbolic links, and other objects are all
files, so the test operators shown above will work with every type of file.

Everyone has an individual style of shell scripting. Whether they use [[]] or[]
in test statements, the above test operators will function the same. This article uses
[[]].Listing 11 shows how you can use a few of the test operators listed above.

Listing 11. Using test operators

#! [usr/ bi n/ ksh

while true

do
echo "\nEnter file to check: \c"
read _FNAMVE

I$H@*%
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 11 of 21

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

if [[! -e "${_FNAME}"]]

t hen
echo "Unable to find file '${_ FNAME}'"
_continue

fi
if [[-f "${_FNAVE}" 1]

t hen
echo "${ _FNAME} is a fi
elif [[-d "${_FNAVE}"]]
t hen
echo "${ _FNAME} is a directory."
elif [[-L "${_FNAME}"]]
t hen
Iecho "${_FNAME} is a synbolic link."
el se
f_echo "Unable to determine file type for '${_FNAMVE}'"
i

[[-r "${ _FNAME}"]] && echo "User ${USER} can read
=

[T -w"${_FNAME}"]] && echo "User ${USER} can wite to
=

[[-x "${_FNAME}"]] && echo "User ${USER} can execute

|e."

"H{_
if [[-s "${_FNAME}" 1]
t hen
echo "${_FNAME} is NOT enpty."
el se

~echo "${_FNAME} is enpty."

Executing the code in Listing 11 and checking a few file names produces the output
shown in Listing 12.

Listing 12. Output from executing the test operators

#1s -l

- FWXT - XTI - X 1 cormany atc 786 Feb 22 16:11
check file

STW-Tr--T1-- 1 cormany atc 0 Aug 04 20:57
enptyfile

./check file

Enter file to check: badfil enane
Unable to find file 'badfil enang'

Enter file to check: check file
check file is a file.

User cormany can read 'check_file'
User cormany can wite to 'check file'
User cormany can execute 'check file'
check file is NOT enpty.

Enter file to check: enptyfile
enptyfile is a file.

User cormany can read 'enptyfile'
User cormany can wite to 'enptyfile’

enptyfile is enpty.

I$H@*%
Page 12 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

To learn more about test operators and to see a complete listing of test operators,
execute nan test.

Logical operators

Another important set of operators in UNIX is the logical operators. Like in most
modern programming languages, the AND and OR statements are necessary for
definitive conditional evaluations of expressions or their values.

If you've read any of my previous articles (see Resources), you'll notice that | favor
logical operators over writing several lines of code. This keeps the scripts clean and
easy to manage. One of the first things | do when writing a script is to write the

exi t_nsg() function:

exit_nsg() {
[[$# -gt 1]] && echo "${0##*/} (${1}) - ${2}"
exit ${1:-0}

rather than having ugly and bloated code like that shown in Listing 13.

Listing 13. The alternative to using the exit_msg() function and clean logical
operators

#! [usr/ bi n/ ksh

if [[-n ${_Num}]]
t hen

unset _NUML
fi

if [[-n ${_Nume}]]

t hen

f_unset _Nuwe
i

\é\hile ([-z ${_Numi}]] || [[-z ${_Nume}]]
o

echo "Enter 2 sets of nunbers: \c"
read NUML _NuwmR

done
echo "Enter file to log results to: \c"
read FNAME
if [[! -e "${_FNAME}"]]
t hen
echo "File '${_FNAME}' doesn't exist. Anewlog will be
created."

fi

touch " ${_FNAME}"

if [[! -w"${_FNAME}"]]
t hen

echo "Unable to wite to file '${_FNAME}'"
exit 1

I$H@*%
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 13 of 21

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

fi

expr ${_NuML} \/ 1 > /dev/null 2>&1
if [[$? -ne 0]]
t hen
echo "Number '${_NUML}' is not nuneric."
. exit 2
|

expr ${_NUM2} \/ 1 > /dev/null 2>&1

if [[$? -ne 0]]

t hen
echo "Nunmber '${_NUM2}' is not nuneric."
exit 2

fi

echo "${_ NUML}, ${ NUM2}" >> "${ FNAME}"

By using a simple function like exi t _nsg() and a few logical operators, the script
could be condensed into the better-looking and easier-to-understand program shown
in Listing 14.

Listing 14. Cleaner version of a script using functions and logical operators

#! [/ usr/ bi n/ ksh

exit_nsg() {
[[$# -gt 1]] &% echo "${0##*/} (${1}) - ${2}"
exit ${1:-0}

—_—r— e

[-n ${_NuML}]] && unset _NUML
[-n ${_Nuw}]] && unset _NUW

ilte [[-z ${_Numi} 1] [| [[-z ${_NuM2}]]

g5

echo "Enter 2 sets of nunbers: \c"
read _NUML _NUMR
done

echo "Enter file to log results to: \c
read _FNAMVE

I -e "${_FNAME}"]] && echo
"File '${_FNAVE}' doesn't exist. Anewlog will be
created.”

touch " ${_FNAME}"

[[! -w"${_FNAME}"]] && exit_nsg 1
"Unable to wite to file '${_FNAME}'"

expr ${_ NuML} \/ 1 > /dev/null 2>&1
[[$? -ne 0]] && exit_neg 2 "Number '${ NUML}' is not
numeric."

expr ${ _Nuwme} \/ 1 > /dev/null 2>&1

[[$? -ne 0]] && exit_nmeg 2 "Number '${ NUM2}' is not
nuneric."

echo "${ NUML}, ${ NUMR2}" >> "${ FNAME}"

I$H@*%
Page 14 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

The previous examples focused more on the AND (&&) and OR (| |) logical operators.
In addition to these, you can use the AND (—a) and OR (—0) operators as discussed in
the section describing[] versus[[]].Ifusingthet est command or single
brackets ([]), use —a and —o to evaluate the expression. If, however, you use
double brackets ([[]]), use & and | | :

[["Paul" != "Xander" && 2 -gt 0]]
echo $?

0

["Paul"™ !'= "Xander" -a 2 -gt 0]
echo $?

0

Comparison test operators

Another set of test operators is called comparison test operators. Like the previous
set of test operators, comparison test operators are a handy way to perform error
checking or to test values against another value. The previous test operators were
used mostly on files or to see if a variable was defined, but the comparison test
operators are used more on strings and numeric values. This can be useful when
checking dates, file sizes, if one string is the same as another string, and so on.

The comparison test operators are:

« <fileA> -nt <fil eB>: fileA is newer than fileB

o <fileA> -ot <fil eB>:fileA s older than fileB

« <fileA> -ef <fil eB>:fileA and fileB point to the same file
e <string> = <pattern>: string matches pattern

* <string> ! = <pattern>: string does not match pattern

e <stringA> < <stringB>: stringA comes before stringB in dictionary
order

e <stringA> > <stringB>: stringA comes after stringB in dictionary
order

o <exprA> -eq <exprB>: expressionA is equal to expressionB

* <expr A> -ne <expr B>: expressionA is not equal to expressionB
o <exprA> -It <exprB>: expressionA is less than expressionB

* <exprA> -gt <exprB>: expressionA is greater than expressionB

o« <exprA> -le <exprB>: expressionA is less than or equal to
expressionB

I$H@*%
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 15 of 21

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

* <exprA> -ge <exprB>: expressionA is greater than or equal to
expressionB

You use the same format on comparison test operators as other operators. You can
use eithertest,[],or[[]].Listing 15, Listing 16, and Listing 17 display how
you can use numeric, string, and file comparisons, respectively.

Listing 15. Numeric comparisons

#1s -1 *.file

STW-Tr--T1-- 1 cormany atc 21 Feb 22 2006
Paul s.file

STW-Tr--T1-- 1 cormany atc 22 Aug 04 20:57

Xanders.file
[["Pauls.file" -ot "Xanders.file"]]

echo $?
0

Listing 16. String comparison

PSIZE="Is -| Pauls.file | awk '{print $5}'"
XSIZE="Is -| Xanders.file | awk '{print $5}'°
[[${_PSIZE} -1t ${_XSIZE}]]

echo $?

0

Listing 17. File comparison

[["cat" = "dog"]]
echo $?
1

Substitution operators

It's easy to forget to define a variable or assign a value to it when a script grows or
you haven't touched the script for years and need to add to it. Other times, it would
be handy to tell users that a value is set or set up some defaults for your users.
Substitution operators are a great address to these problems:

o ${var-val ue}: If <var > exists, return <var >'s value. If <var > doesn't
exist, return <val ue>.

o ${var=val ue}: If <var > exists, return <var >'s value. If <var > doesn't
exist, set <var > to <val ue> and return <val ue>.

I$H@*%
Page 16 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

* ${var +val ue}: If <var > exists, return <val ue>. If <var > doesn't exist,
return NULL.

o ${var?val ue}: If <var > exists, return <var >'s value. If <var > doesn't
exist, exit the command or script and display the error message set with
<val ue>. If <val ue> isn't set, a default error message of "Parameter
null or not set" is displayed.

e ${var: -val ue}: If <var > exists and isn't NULL, return <var >'s value.
If <var > doesn't exist or is NULL, return <val ue>.

o ${var: =val ue}: If <var > exists and isn't NULL, return <var >'s value.
If <var > doesn't exist or is NULL, set <var > to <val ue> and return
<val ue>.

o ${var: +val ue}: If <var > exists and isn't NULL, return <val ue>. If
<var > doesn't exist or is NULL, return NULL.

o ${var: ?val ue}: If <var > exists and isn't NULL, return <var >'s value.
If <var > doesn't exist or is NULL, exit the command or script and display
the error message set with <val ue>. If <val ue> isn't set, a default error
message of "Parameter null or not set" is displayed.

Note the subtle difference between the first group of four definitions and the second
set of four. The last set includes a colon (:) between the variable name and the
substitution operator, which adds the check to see if the variable is NULL, as well.
Another important note to think about when trying to assign values to variables with
substitution operators is that assigning a value to a variable has the same rules as
defining a variable normally from the command line or a script. Protected reserved
variables cannot be overwritten with a new value (for example, $1, $2, $3).

Listing 18 provides an example of how the variables work. Note that you can
combine several substitution operators, as shown in the last line of the script.

Listing 18. Using substitution operators

cat subops_exanpl es
#1 [usr/ bi n/ ksh

_ARGL="${1}"
echo "Test 1A: The 1st argunent
echo "Test 1B: The 1st argunent

_ARX="${2}"
echo "Test 2A: The 2nd argunent i
echo "Test 2B: The 2nd argunent i

_ARG3="${3}"
echo "Test 3A: The 3rd argunent i
echo "Test 3B: The 3rd argunent i

_ARGA="${ 4} "

${_ARGL-' ATC }"
${ _ARGL: -' ATC }"

()

${_ARG-' AMDC }"
${ ARG -' AMDC }"

(7]

${_ARG3=' PAC }"
${ _ARG3: =' PAC }"

(7]

I$H@*%
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 17 of 21

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

echo "Test 4A: ${4:+' The 4th argunent was supplied }"

echo "Test 5: If the 4th argunent was provi ded, the val ue

woul d be

${4:?' The 4th argunent was not supplied.'}. Oherw se,
we will not

see this message and get an error instead."
ARG3="${8}"

echo "${ ARGS: =${7:-${6:-${5:-No Argunents were supplied
after the 4th}}}}"

Listing 19 shows how to execute the script with no argument supplied.

Listing 19. Execute the script without arguments

. I subops_exanpl es

Test 1A: The 1st argunment is

Test 1B: The 1st argument is ATC

Test 2A: The 2nd argunent is

Test 2B: The 2nd argument is AMDC

Test 3A: The 3rd argunent is

Test 3B: The 3rd argument is PAC

Test 4A

./ subops_exanpl es[18] : 4: The 4th argument was not

supplled

Listing 20 shows what happens when executing the script with only three arguments.

Listing 20. Execute the script with three arguments

/subops exanpl es argl arg2 arg3

Test The 1st argunent is argl

Test lB: The 1st argunent is argl

Test 2A: The 2nd argunent is arg2

Test 2B: The 2nd argunent is arg2

Test 3A: The 3rd argunent is arg3

Test 3B: The 3rd argunent is arg3

Test 4A

./ subops_exanpl es[18] : 4: The 4th argument was not
supplled

Listing 21 shows what happens when you supply only four arguments.

Listing 21. Execute the script with four arguments

/subops exanpl es argl arg2 argS ar g4
Test The 1st argunent is argl
Test 1B: The 1st argunent is argl
Test 2A: The 2nd argunent is arg2
Test 2B: The 2nd argunent is arg2
Test 3A: The 3rd argunent is arg3
Test 3B: The 3rd argunent is arg3
Test 4A: The 4th argunment was supplied
Eest 5: If the 4th argunent was provi ded, the val ue woul d
e
arg4. G herwise, we will not see this nessage and get

I$H@*%
Page 18 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

an
error instead.
No Argunents were supplied after the 4th

Listing 22 shows all five arguments supplied.

Listing 22. Execute the script with all five arguments

/subops exanpl es argl arg2 arg3 arg4 argb
Test The 1st argunent is argl

Test 1B: The 1st argunent is argl
Test 2A: The 2nd argunent is arg2
Test 2B: The 2nd argunent is arg2
Test 3A: The 3rd argunment is arg3

Test 3B: The 3rd argunent is arg3
Test 4A: The 4th argunent was supplied
Test 5: If the 4th argunent was provi ded, the val ue would

be

arg4. O herwise, we will not see this nessage and get
an

error instead.
ar g5

Listing 23 shows seven arguments supplied. Note how arguments 5 and 6 were
ignored, because seven arguments were provided.

Listing 23. Execute the script with seven arguments

./ subops_exanpl es argl arg2 arg3 arg4 arg5 arg6 arg7
Test 1A: The 1st argunent is argl
Test 1B: The 1st argument is argl
Test 2A: The 2nd argunment is arg2
Test 2B: The 2nd argunent is arg2
Test 3A: The 3rd argunment is arg3
Test 3B: The 3rd argunment is arg3

Test 4A: The 4th argunment was supplied
Test 5: If the 4th argunent was provi ded, the val ue would
be

arg4d. O herwise, we will not see this nessage and get
an

error instead.
arg’7

Conclusion

After reading this article, you should have a better understanding of all those

"strange" characters UNIX users are typing. Knowing how to redirect data as stdin or
stdout, how to use the pipe, and how to use operators in UNIX helps you write more

powerful scripts with better error trapping and cleaner logic. Good luck!

I$H@*%
© Copyright IBM Corporation 1994, 2007. All rights reserved.

Page 19 of 21

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

Resources

Learn
» Speaking UNIX: Check out other parts in this series.
* test command: See IBM's commands reference for the UNIX t est command.

* Redirecting output to here-documents: See IBM's infocenter information on this
type of redirection.

* Input and output redirection: See IBM's infocenter entry on input and output
redirection.

* Wikipedia's pipeline entry: Read Wikipedia's excellent entry on pipelines in the
UNIX environment.

» Wikipedia's definition of the UNIX test command: Read Wikipedia's entry on the
UNIX t est command.

* The AIX and UNIX developerWorks zone provides a wealth of information
relating to all aspects of AlX systems administration and expanding your UNIX
skills.

* New to AIX and UNIX? Visit the New to AlX and UNIX page to learn more.

» developerWorks technical events and webcasts: Stay current with
developerWorks technical events and webcasts.

* AIX Wiki: Visit this collaborative environment for technical information related to
AlX.

* Podcasts: Tune in and catch up with IBM technical experts.
Get products and technologies

» IBM trial software: Build your next development project with software for
download directly from developerWorks.

Discuss
» Participate in the AIX and UNIX forums:
e AIX Forum
e AIX Forum for developers
* Cluster Systems Management
e |IBM Support Assistant Forum
» Performance Tools Forum

¢ Virtualization Forum

I$H@*%
Page 20 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www-128.ibm.com/developerworks/views/aix/libraryview.jsp?search_by=speaking+UNIX+Part
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds5/test.htm
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.baseadmn/doc/baseadmndita/redir_output_inline.htm
http://publib.boulder.ibm.com/infocenter/systems/topic/com.ibm.aix.baseadmn/doc/baseadmndita/input_output_redir.htm
http://en.wikipedia.org/wiki/Pipeline_(Unix)
http://en.wikipedia.org/wiki/Test_(Unix)
http://www-128.ibm.com/developerworks/aix/
http://www-128.ibm.com/developerworks/aix/newto/
http://www.ibm.com/developerworks/offers/techbriefings
http://www-941.ibm.com/collaboration/wiki/display/WikiPtype/Home
http://www-128.ibm.com/developerworks/podcast/
http://www-128.ibm.com/developerworks/downloads/?S_TACT=105AGY06&S_CMP=art
http://www-128.ibm.com/developerworks/forums/dw_forum.jsp?forum=747&cat=72
http://www-128.ibm.com/developerworks/forums/dw_forum.jsp?forum=905&cat=72
http://www-128.ibm.com/developerworks/forums/dw_forum.jsp?forum=907&cat=72
http://www-128.ibm.com/developerworks/forums/dw_forum.jsp?forum=935&cat=72
http://www-128.ibm.com/developerworks/forums/dw_forum.jsp?forum=749&cat=72
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=748
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

* More AlX and UNIX forums

About the author

Adam T. Cormany

Adam Cormany is currently the manager of the National Data Center, but he has also
been a UNIX systems engineer, a UNIX administrator, and operations manager for
Scientific Games Corporation. Adam has worked extensively with AlX as well as in
Solaris and Red Hat Linux administration for more than 10 years. He is an IBM
eServer®-Certified Specialist in pSeries® AlX System Administration. In addition to
administration, Adam has extensive knowledge of shell scripting in Bash, CSH, and
KSH as well as programming in C, PHP, and Perl. You can reach Adam at
acormany@yahoo.com.

Trademarks

IBM, AlX, eServer, and pSeries are registered trademarks of International Business
Machines in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

I$H@*%
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 21 of 21

http://www-128.ibm.com/developerworks/forums/dw_auforums.jsp
acormany@yahoo.com
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Pipeline
	Data redirection with >, >>, <, and <<
	Stdin, not stdout
	Subshells
	The test command, [], and [[]]
	Operators
	Conclusion
	Resources
	About the author
	Trademarks

