
Speaking UNIX: !$#@*%
Learn even more command-line tricks and operators

Skill Level: Intermediate

Adam T. Cormany (acormany@yahoo.com)
National Data Center Manager
Scientific Games Corporation

30 Sep 2008

Get a better understanding of all those "strange" characters UNIX® users are typing.
Learn how to use pipelines, redirections, operators, and more in UNIX.

So, you've worked on IBM® AIX® for a while now. You've learned a few of the basic
commands to help you maneuver through a directory structure, create and modify
files, see what processes are running, and maybe even administer users and the
system. That's great, but you want to understand what the UNIX® administrators
next to you are typing. It looks like a lot of commands interspersed with strange
symbols. Learn what |, >, >>, <, <<, [[and]], and many more symbols mean in
UNIX and Linux® as well as how to get the most out of operators such as &&, ||, <,
<=, and !=.

Pipeline

If you're familiar with UNIX, the pipeline, or pipe, is an integral part of everyday
processing. Originally developed by Malcolm McIlroy, the pipeline allows you to
redirect the standard output (stdout) of one command to become the standard input
(stdin) of the following command in a single chained execution. Using the pipeline
isn't limited to one instance per execution. Quite often, the stdout of one command is
used as stdin of the following command, and the subsequent stdout is redirected yet
again as stdin to another command and so on.

For example, one of the first things most UNIX administrators do on their systems
during troubleshooting or daily checks is look at processes running currently on the

!$#@*%
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 21

mailto:acormany@yahoo.com
http://www.ibm.com/legal/copytrade.shtml

system. Listing 1 shows such a check.

Listing 1. Example of a daily process check

ps –ef

UID PID PPID C STIME TTY TIME CMD
root 1 0 0 Jul 27 - 0:05

/etc/init
root 53442 151674 0 Jul 27 - 0:00

/usr/sbin/syslogd
root 57426 1 0 Jul 27 - 0:00

/usr/lib/errdemon
root 61510 1 0 Jul 27 - 23:55

/usr/sbin/syncd 60
root 65634 1 0 Jul 27 - 0:00

/usr/ccs/bin/shlap64
root 82002 110652 0 Jul 27 - 0:24

/usr/lpp/X11/bin/X -x abx
-x dbe -x GLX -D /usr/lib/X11//rgb -T -force :0

-auth /var/dt/A:0-SfIdMa
root 86102 1 0 Jul 27 - 0:00

/usr/lib/methods/ssa_daemon -l ssa0
root 106538 151674 0 Jul 27 - 0:01

sendmail: accepting connections
root 110652 1 0 Jul 27 - 0:00

/usr/dt/bin/dtlogin -daemon
root 114754 118854 0 Jul 27 - 20:22 dtgreet
root 118854 110652 0 Jul 27 - 0:00 dtlogin

<:0> -daemon
root 131088 1 0 Jul 27 - 0:07

/usr/atria/etc/lockmgr
-a /var/adm/atria/almd -q 1024 -u 256 -f 256

root 147584 1 0 Jul 27 - 0:01
/usr/sbin/cron

root 155816 151674 0 Jul 27 - 0:04
/usr/sbin/portmap

root 163968 151674 0 Jul 27 - 0:00
/usr/sbin/qdaemon

root 168018 151674 0 Jul 27 - 0:00
/usr/sbin/inetd

root 172116 151674 0 Jul 27 - 0:03
/usr/sbin/xntpd

root 180314 151674 0 Jul 27 - 0:19
/usr/sbin/snmpmibd

root 184414 151674 0 Jul 27 - 0:21
/usr/sbin/aixmibd

root 188512 151674 0 Jul 27 - 0:20
/usr/sbin/hostmibd

root 192608 151674 0 Jul 27 - 7:46
/usr/sbin/muxatmd

root 196718 151674 0 11:00:27 - 0:00
/usr/sbin/rpc.mountd

root 200818 151674 0 Jul 27 - 0:00
/usr/sbin/biod 6

root 213108 151674 0 Jul 27 - 0:00
/usr/sbin/nfsd 3891

root 221304 245894 0 Jul 27 - 0:05
/bin/nsrexecd
daemon 225402 151674 0 11:00:27 - 0:00

/usr/sbin/rpc.statd
root 229498 151674 0 11:00:27 - 0:00

/usr/sbin/rpc.lockd
root 241794 151674 0 Jul 27 - 0:51

/usr/lib/netsvc/yp/ypbind
root 245894 1 0 Jul 27 - 0:00

developerWorks® ibm.com/developerWorks

!$#@*%
Page 2 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

/bin/nsrexecd
root 253960 1 0 Jul 27 - 0:00

./mflm_manager
root 274568 151674 0 Jul 27 - 0:00

/usr/sbin/sshd -D
root 282766 1 0 Jul 27 lft0 0:00

/usr/sbin/getty /dev/console
root 290958 1 0 Jul 27 - 0:00

/usr/lpp/diagnostics/bin/diagd
root 315646 151674 0 Jul 27 - 0:00

/usr/sbin/lpd
root 319664 1 0 Jul 27 - 0:00

/usr/atria/etc/albd_server
root 340144 168018 0 12:34:56 - 0:00

rpc.ttdbserver 100083 1
root 376846 168018 0 Jul 30 - 0:00 rlogind

cormany 409708 569522 0 19:29:27 pts/1 0:00 -ksh
root 569522 168018 0 19:29:26 - 0:00 rlogind

cormany 733188 409708 3 19:30:34 pts/1 0:00 ps -ef
root 749668 168018 0 Jul 30 - 0:00 rlogind

The listing of the processes currently running on a system can be simple, as shown
in Listing 1; however, most production systems run several more processes that
make the output of ps much longer. To shorten the list to what you're looking for,
redirect the standard output of ps –ef using a pipeline to grep to search for exactly
what you want to see. Listing 2 shows the process list from Listing 1 redirected to
grep to search for the strings "rpc" and "ksh."

Listing 2. Redirecting the process list to grep

ps –ef | grep –E "rpc|ksh"

root 196718 151674 0 11:00:27 - 0:00
/usr/sbin/rpc.mountd
daemon 225402 151674 0 11:00:27 - 0:00

/usr/sbin/rpc.statd
root 229498 151674 0 11:00:27 - 0:00

/usr/sbin/rpc.lockd
root 340144 168018 0 12:34:56 - 0:00

rpc.ttdbserver 100083 1
cormany 409708 569522 0 19:29:27 pts/1 0:00 -ksh
cormany 733202 409708 0 19:52:20 pts/1 0:00 grep -E
rpc|ksh

Using the pipeline can be much more complicated when you redirect stdout to stdin
several times. In the following example, the previous ps and grep example is
expanded to pipeline the stdout to another grep to exclude any previous strings
found that includes "grep" or "ttdbserver." When the final grep operation has
finished, the stdout is redirected again using a pipeline to an awk statement to print
any of the processes found with a process identifier (PID) larger than 200,000:

ps –ef | grep –E "rpc|ksh" | grep -vE
"grep|rpc.ttdbserver" |

awk -v _MAX_PID=200000 '{if ($2 > _MAX_PID) {print "PID
for

process",$8,"is greater than", _MAX_PID}}'

ibm.com/developerWorks developerWorks®

!$#@*%
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 21

http://www.ibm.com/legal/copytrade.shtml

PID for process /usr/sbin/rpc.statd is greater than 200000
PID for process /usr/sbin/rpc.lockd is greater than 200000
PID for process -ksh is greater than 200000

Figure 1 provides a graphical representation of the command's stdout redirecting to
stdin for the subsequent command.

Figure 1. Pipeline example

Data redirection with >, >>, <, and <<

Another important aspect of executing commands from the command-line interface
(CLI) is the ability to write various outputs to a device or to read input into a
command from another device. To write the output of a command, append the
greater-than symbol (> or >>) and the target file name or device desired after the
command to be executed. If the target file doesn't exist and you have Write
permissions to the target directory, > and >> create the file with permissions of your
umask and write the command's output to the newly created file. If, however, the file
does exist, > attempts to open the file and overwrite the entire contents. If you would
rather append to the file, simply use >>. Think of it as the flow of output data moving
from the command on the left moving to the destination file on the right (that is,
<cmd> -> <output> -> <file>).

developerWorks® ibm.com/developerWorks

!$#@*%
Page 4 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The following example executes the ps –ef sample shown in the section,
"Pipeline," and redirects the output to a file named ps_out:

ps –ef | grep –E "rpc|ksh" > ps_out

The following code executes the earlier extended pipeline example and redirects the
output to the same file—ps_out—but appends to the current data:

ps –ef | grep –E "rpc|ksh" | grep -vE
"grep|rpc.ttdbserver" |

awk -v _MAX_PID=200000 '{if ($2 > _MAX_PID) {print "PID
for

process",$8,"is greater than", _MAX_PID}}' >> ps_out

Listing 3 shows the output from the last two redirections.

Listing 3. Output from subsequent redirections

cat ps_out

root 196718 151674 0 11:00:27 - 0:00
/usr/sbin/rpc.mountd
daemon 225402 151674 0 11:00:27 - 0:00

/usr/sbin/rpc.statd
root 229498 151674 0 11:00:27 - 0:00

/usr/sbin/rpc.lockd
root 340144 168018 0 12:34:56 - 0:00

rpc.ttdbserver 100083 1
cormany 409708 569522 0 19:29:27 pts/1 0:00 -ksh
cormany 733202 409708 0 19:52:20 pts/1 0:00 grep -E
rpc|ksh
PID for process /usr/sbin/rpc.statd is greater than 200000
PID for process /usr/sbin/rpc.lockd is greater than 200000
PID for process -ksh is greater than 200000

When redirecting output with > alone, only the stdout of the command is redirected.
Keep in mind that with computing, there is stdout as well as stderr: The former is
represented as 1, while stderr is 2. Redirecting output in UNIX is no different. Simply
place the desired output type before the > (for example, 1>, 2>) to tell the shell
where to route the output.

Listing 4 attempts to list files fileA.tar.bz2 and fileC.tar.bz2. Unfortunately, as shown
in the first command (ls), fileC.tar.bz2 doesn't exist. Thankfully, we remembered to
separate stdout into ls.out and stderr into ls.err.

Listing 4. Listing the files fileA.tar.bz2 and fileC.tar.bz2

ls
fileA.tar.bz2 fileAA.tar.bz2 fileB.tar.bz2
fileBB.tar.bz2

ibm.com/developerWorks developerWorks®

!$#@*%
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 21

pipe.html
http://www.ibm.com/legal/copytrade.shtml

ls fileA.tar.bz2 fileC.tar.bz2 1> ls.out 2> ls.err

cat ls.out
fileA.tar.bz2

cat ls.err
ls: 0653-341 The file fileC.tar.bz2 does not exist.

The same rules apply in AIX with > and >> on stdout and stderr. For example, the
same output files can be used for future tests, as Listing 5 shows.

Listing 5. Using output files for future tests

ls fileB.tar.bz2 fileD.tar.bz2 1>> ls.out 2>> ls.err

cat ls.out
fileA.tar.bz2
fileB.tar.bz2

cat ls.err
ls: 0653-341 The file fileC.tar.bz2 does not exist.
ls: 0653-341 The file fileD.tar.bz2 does not exist.

There are times when you may need to have both stdout and stderr written to the
same file or device. You can do this in either of two ways. The first method is to
direct 1> and 2> to the same file:

ls fileA.tar.bz2 fileC.tar.bz2 1> ls.out 2> ls.out

cat ls.out
fileA.tar.bz2
ls: 0653-341 The file fileC.tar.bz2 does not exist.

The second method is a simpler and quicker way to accomplish the same thing and
is used more frequently by experienced UNIX users:

ls fileA.tar.bz2 fileC.tar.bz2 > ls.out 2>&1

cat ls.out
fileA.tar.bz2
ls: 0653-341 The file fileC.tar.bz2 does not exist.

Let's break the statement down. First, ls fileA.tar.bz2 fileC.tar.bz2 is
executed. The stdout is redirected to ls.out with > ls.out, and stderr is redirected
to the same file to which stdout is redirected (ls.out) with 2>&1.

Remember that you can redirect output to files as well as other devices. You can
redirect data to printers, floppy disks, Terminal Types (TTYs), and various other
devices. For example, if you wanted to send a message to a single user on all
sessions (or TTYs), you could just loop through who and redirect a message to the
TTYs if you have adequate permissions, as shown in Listing 6.

developerWorks® ibm.com/developerWorks

!$#@*%
Page 6 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Listing 6. Redirecting a message to a TTY

for _TTY in 'who | grep "cormany" | awk '{print $2}''
> do
> _TTY="/dev/${_TTY}"
> echo "Sending message to cormany on ${_TTY}"
> echo "Test Message to cormany@${_TTY}" > ${_TTY}
> done

Sending message to cormany on /dev/pts/13
Test Message to cormany@/dev/pts/13
Sending message to cormany on /dev/pts/14

Stdin, not stdout

Although using > and >> seems a relatively easy concept for most to pick up, it's
common for others to have difficulties using the less-than symbols (< and <<). When
thinking of > and >>, it's easiest to visualize them as the flow of output data moving
from the command on the left to the destination file on the right. The same applies to
< and <<. Using <, you essentially execute a command with stdin already supplied.
Think of it as the data already provided supplied to the command on the left of the
data as stdin (that is, <cmd> <- <data>).

For example, say you want to send an e-mail of an ASCII text file to another user.
You could use a pipeline to redirect the stdout of cat to stdin of mail (that is, cat
mail_file.out | mail –s "Here's your E-mail!"
acormany@yahoo.com), or you could redirect the contents of the file to become
stdin for the mail command:

mail –s "Here's your E-mail!" acormany@yahoo.com <
mail_file.out

Using <<, also known as a here-document, can save some formatting time and is
easier on the processing time of the command execution. By using <<, the string of
text is directed to the command to execute as stdin, but you can continue to enter
information until the termination identifier has been reached. Simply type the
command following << and the termination identifier, type anything you want, and
end it with the termination identifier on a new line. Using the here-document allows
you to preserver whitespace, new lines, and so on.

For example, rather than typing five echo statements that UNIX would have to
process individually:

echo "Line 1"
Line 1

echo "Line 2"

ibm.com/developerWorks developerWorks®

!$#@*%
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 21

http://www.ibm.com/legal/copytrade.shtml

Line 2

echo "Line 3"
Line 3

echo "Line 4"
Line 4

echo "Line 5"
Line 5

you could use the following code to replace the multi-echo statement, and UNIX
would only need to process a single execution:

cat << EOF
> Line 1
> Line 2
> Line 3
> Line 4
> Line 5
> EOF

Line 1
Line 2
Line 3
Line 4
Line 5

To allow tabs to make everything look a bit neater in the shell script, simply place a
hyphen (-) between the << and the termination identifier:

cat <<- ATC
> Line 1
> Line 2
> Line 3
> Line 4
> Line 5
> ATC

Line 1
Line 2
Line 3
Line 4
Line 5

Listing 7 provides an example of how to combine a few items discussed in this
article so far.

Listing 7. Combining CLI

cat redirect_example

#!/usr/bin/ksh

cat <<- ATC | sed "s/^/Redirect Example => /g" >> atc.out
This is an example of how to redirect

developerWorks® ibm.com/developerWorks

!$#@*%
Page 8 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

stdout to a file as well as pipe stdout into stdin
of another command (i.e. sed), all done inside
a here-document.

Cool eh?
ATC

Now let's see what the script looks like with the redirection and pipeline.

./redirect_example

cat atc.out
Redirect Example => This is an example of how to redirect
Redirect Example => stdout to a file as well as pipe
stdout into stdin
Redirect Example => of another command (i.e. sed), all
done inside
Redirect Example => a here-document.
Redirect Example =>
Redirect Example => Cool eh?

Subshells

Sometimes, you need to execute several commands together. For example, if you
want to perform a specific action in a different directory, you could use the code in
Listing 8.

Listing 8. Execute several commands at the same time

pwd
/home/cormany

cd testdir

tar –cf ls_output.tar ls.out?

pwd
/home/cormany/testdir

This works, but note that after the execution of theses steps, you're no longer in your
original directory. By placing the commands into their own subshell, they execute as
a single instance of the subshell. Listing 9 shows the same idea executed using a
subshell.

Listing 9. Execute several commands at the same time using a subshell

pwd
/home/cormany

(cd testdir ; tar -cf ls_output.tar ls.out?)

pwd

ibm.com/developerWorks developerWorks®

!$#@*%
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 21

http://www.ibm.com/legal/copytrade.shtml

/home/cormany

The test command, [], and [[]]

When writing a shell script or programming in any modern language, the ability to
evaluate expressions or values is essential to competent programs. UNIX has it
covered as always with the test command. As the test man page states, the
test command evaluates expression parameters and, if the expression value is
True, returns a zero (True) exit value. For more information on the definition of test
and all the available conditions, see the test man page.

To use the test command, simply provide the command with the appropriate flag
and file name. When test has evaluated the expression, you're returned to a
command prompt, where you can verify the return code, as shown in Listing 10.

Listing 10. Verify return code

ls –l
-rwxr-xr-x 1 cormany atc 786 Feb 22 16:11
check_file
-rw-r--r-- 1 cormany atc 0 Aug 04 20:57
emptyfile

test -f emptyfile
echo $?
0

test -f badfilename
echo $?
1

As stated in the definition, test returns a zero exit value if the expression value was
True or a non-zero exit value (that is, 1). In Listing 10, the file emptyfile was found,
so test returned 0; the file badfilename was not found, so 1 was returned.

Another way to use the test command is to place the expression to evaluate within
single brackets ([]). Using the test command or replacing it with [] returns the
same value, as they are identical executions:

[-f emptyfile]
echo $?
0

[-f badfilename]
echo $?
1

Using single brackets ([]) versus double brackets ([[]]) is a personal
preference and really depends on how you've been taught commands and shell

developerWorks® ibm.com/developerWorks

!$#@*%
Page 10 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

scripting. But keep in mind that there are some differences between the two
evaluations. Although [] and [[]] use the same test operators during
evaluation, they use different logical operators.

Operators

In ksh, the default shell used in AIX, as well as other shells used in UNIX and Linux,
it's important to know how to use test, logical, and substitution operators.

Test operators

When writing shell scripts, test operators are crucial to error checking and for
checking the status of files. The following test operators are just a few that you can
use in ksh as well as other standard UNIX shells:

• -d <file>: <file> is a directory

• -e <flle>: <file> exists

• -f <file>: <file> is a regular file

• -n <string>: <string> is not NULL

• -r <file>: The user has Read permissions to <file>

• -s <file>: <file> size is greater than 0

• -w <file>: The user has Write permissions to <file>

• -x <file>: The user has Execute permissions to <file>

• -z <string>: <string> is null

• -L <file>: <file> is a symbolic link

Remember, in UNIX directories, devices, symbolic links, and other objects are all
files, so the test operators shown above will work with every type of file.

Everyone has an individual style of shell scripting. Whether they use [[]] or []
in test statements, the above test operators will function the same. This article uses
[[]]. Listing 11 shows how you can use a few of the test operators listed above.

Listing 11. Using test operators

#!/usr/bin/ksh

while true
do
echo "\nEnter file to check: \c"
read _FNAME

ibm.com/developerWorks developerWorks®

!$#@*%
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 11 of 21

http://www.ibm.com/legal/copytrade.shtml

if [[! -e "${_FNAME}"]]
then

echo "Unable to find file '${_FNAME}'"
continue

fi

if [[-f "${_FNAME}"]]
then

echo "${_FNAME} is a file."
elif [[-d "${_FNAME}"]]
then

echo "${_FNAME} is a directory."
elif [[-L "${_FNAME}"]]
then

echo "${_FNAME} is a symbolic link."
else

echo "Unable to determine file type for '${_FNAME}'"
fi

[[-r "${_FNAME}"]] && echo "User ${USER} can read
'${_FNAME}'"
[[-w "${_FNAME}"]] && echo "User ${USER} can write to

'${_FNAME}'"
[[-x "${_FNAME}"]] && echo "User ${USER} can execute

'${_FNAME}'"

if [[-s "${_FNAME}"]]
then

echo "${_FNAME} is NOT empty."
else

echo "${_FNAME} is empty."
fi

done

Executing the code in Listing 11 and checking a few file names produces the output
shown in Listing 12.

Listing 12. Output from executing the test operators

ls –l
-rwxr-xr-x 1 cormany atc 786 Feb 22 16:11
check_file
-rw-r--r-- 1 cormany atc 0 Aug 04 20:57
emptyfile

./check_file

Enter file to check: badfilename
Unable to find file 'badfilename'

Enter file to check: check_file
check_file is a file.
User cormany can read 'check_file'
User cormany can write to 'check_file'
User cormany can execute 'check_file'
check_file is NOT empty.

Enter file to check: emptyfile
emptyfile is a file.
User cormany can read 'emptyfile'
User cormany can write to 'emptyfile'
emptyfile is empty.

developerWorks® ibm.com/developerWorks

!$#@*%
Page 12 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

To learn more about test operators and to see a complete listing of test operators,
execute man test.

Logical operators

Another important set of operators in UNIX is the logical operators. Like in most
modern programming languages, the AND and OR statements are necessary for
definitive conditional evaluations of expressions or their values.

If you've read any of my previous articles (see Resources), you'll notice that I favor
logical operators over writing several lines of code. This keeps the scripts clean and
easy to manage. One of the first things I do when writing a script is to write the
exit_msg() function:

exit_msg() {
[[$# -gt 1]] && echo "${0##*/} (${1}) – ${2}"
exit ${1:-0}

}

rather than having ugly and bloated code like that shown in Listing 13.

Listing 13. The alternative to using the exit_msg() function and clean logical
operators

#!/usr/bin/ksh

if [[-n ${_NUM1}]]
then
unset _NUM1

fi

if [[-n ${_NUM2}]]
then
unset _NUM2

fi

while [[-z ${_NUM1}]] || [[-z ${_NUM2}]]
do
echo "Enter 2 sets of numbers: \c"
read _NUM1 _NUM2

done

echo "Enter file to log results to: \c"
read _FNAME

if [[! -e "${_FNAME}"]]
then
echo "File '${_FNAME}' doesn't exist. A new log will be

created."
fi

touch "${_FNAME}"

if [[! -w "${_FNAME}"]]
then
echo "Unable to write to file '${_FNAME}'"
exit 1

ibm.com/developerWorks developerWorks®

!$#@*%
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 13 of 21

http://www.ibm.com/legal/copytrade.shtml

fi

expr ${_NUM1} \/ 1 > /dev/null 2>&1
if [[$? -ne 0]]
then
echo "Number '${_NUM1}' is not numeric."
exit 2

fi

expr ${_NUM2} \/ 1 > /dev/null 2>&1
if [[$? -ne 0]]
then
echo "Number '${_NUM2}' is not numeric."
exit 2

fi

echo "${_NUM1},${_NUM2}" >> "${_FNAME}"

By using a simple function like exit_msg() and a few logical operators, the script
could be condensed into the better-looking and easier-to-understand program shown
in Listing 14.

Listing 14. Cleaner version of a script using functions and logical operators

#!/usr/bin/ksh

exit_msg() {
[[$# -gt 1]] && echo "${0##*/} (${1}) - ${2}"
exit ${1:-0}

}

[[-n ${_NUM1}]] && unset _NUM1
[[-n ${_NUM2}]] && unset _NUM2

while [[-z ${_NUM1}]] || [[-z ${_NUM2}]]
do
echo "Enter 2 sets of numbers: \c"
read _NUM1 _NUM2

done

echo "Enter file to log results to: \c"
read _FNAME

[[! -e "${_FNAME}"]] && echo
"File '${_FNAME}' doesn't exist. A new log will be

created."

touch "${_FNAME}"

[[! -w "${_FNAME}"]] && exit_msg 1
"Unable to write to file '${_FNAME}'"

expr ${_NUM1} \/ 1 > /dev/null 2>&1
[[$? -ne 0]] && exit_msg 2 "Number '${_NUM1}' is not
numeric."

expr ${_NUM2} \/ 1 > /dev/null 2>&1
[[$? -ne 0]] && exit_msg 2 "Number '${_NUM2}' is not
numeric."

echo "${_NUM1},${_NUM2}" >> "${_FNAME}"

developerWorks® ibm.com/developerWorks

!$#@*%
Page 14 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The previous examples focused more on the AND (&&) and OR (||) logical operators.
In addition to these, you can use the AND (–a) and OR (–o) operators as discussed in
the section describing [] versus [[]]. If using the test command or single
brackets ([]), use –a and –o to evaluate the expression. If, however, you use
double brackets ([[]]), use && and ||:

[["Paul" != "Xander" && 2 -gt 0]]
echo $?
0

["Paul" != "Xander" -a 2 -gt 0]
echo $?
0

Comparison test operators

Another set of test operators is called comparison test operators. Like the previous
set of test operators, comparison test operators are a handy way to perform error
checking or to test values against another value. The previous test operators were
used mostly on files or to see if a variable was defined, but the comparison test
operators are used more on strings and numeric values. This can be useful when
checking dates, file sizes, if one string is the same as another string, and so on.

The comparison test operators are:

• <fileA> -nt <fileB>: fileA is newer than fileB

• <fileA> -ot <fileB>: fileA is older than fileB

• <fileA> -ef <fileB>: fileA and fileB point to the same file

• <string> = <pattern>: string matches pattern

• <string> != <pattern>: string does not match pattern

• <stringA> < <stringB>: stringA comes before stringB in dictionary
order

• <stringA> > <stringB>: stringA comes after stringB in dictionary
order

• <exprA> -eq <exprB>: expressionA is equal to expressionB

• <exprA> -ne <exprB>: expressionA is not equal to expressionB

• <exprA> -lt <exprB>: expressionA is less than expressionB

• <exprA> -gt <exprB>: expressionA is greater than expressionB

• <exprA> -le <exprB>: expressionA is less than or equal to
expressionB

ibm.com/developerWorks developerWorks®

!$#@*%
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 15 of 21

http://www.ibm.com/legal/copytrade.shtml

• <exprA> -ge <exprB>: expressionA is greater than or equal to
expressionB

You use the same format on comparison test operators as other operators. You can
use either test, [], or [[]]. Listing 15, Listing 16, and Listing 17 display how
you can use numeric, string, and file comparisons, respectively.

Listing 15. Numeric comparisons

ls -l *.file
-rw-r--r-- 1 cormany atc 21 Feb 22 2006
Pauls.file
-rw-r--r-- 1 cormany atc 22 Aug 04 20:57
Xanders.file

[["Pauls.file" -ot "Xanders.file"]]
echo $?
0

Listing 16. String comparison

_PSIZE=`ls -l Pauls.file | awk '{print $5}'`

_XSIZE=`ls -l Xanders.file | awk '{print $5}'`

[[${_PSIZE} -lt ${_XSIZE}]]

echo $?
0

Listing 17. File comparison

[["cat" = "dog"]]

echo $?
1

Substitution operators

It's easy to forget to define a variable or assign a value to it when a script grows or
you haven't touched the script for years and need to add to it. Other times, it would
be handy to tell users that a value is set or set up some defaults for your users.
Substitution operators are a great address to these problems:

• ${var-value}: If <var> exists, return <var>'s value. If <var> doesn't
exist, return <value>.

• ${var=value}: If <var> exists, return <var>'s value. If <var> doesn't
exist, set <var> to <value> and return <value>.

developerWorks® ibm.com/developerWorks

!$#@*%
Page 16 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• ${var+value}: If <var> exists, return <value>. If <var> doesn't exist,
return NULL.

• ${var?value}: If <var> exists, return <var>'s value. If <var> doesn't
exist, exit the command or script and display the error message set with
<value>. If <value> isn't set, a default error message of "Parameter
null or not set" is displayed.

• ${var:-value}: If <var> exists and isn't NULL, return <var>'s value.
If <var> doesn't exist or is NULL, return <value>.

• ${var:=value}: If <var> exists and isn't NULL, return <var>'s value.
If <var> doesn't exist or is NULL, set <var> to <value> and return
<value>.

• ${var:+value}: If <var> exists and isn't NULL, return <value>. If
<var> doesn't exist or is NULL, return NULL.

• ${var:?value}: If <var> exists and isn't NULL, return <var>'s value.
If <var> doesn't exist or is NULL, exit the command or script and display
the error message set with <value>. If <value> isn't set, a default error
message of "Parameter null or not set" is displayed.

Note the subtle difference between the first group of four definitions and the second
set of four. The last set includes a colon (:) between the variable name and the
substitution operator, which adds the check to see if the variable is NULL, as well.
Another important note to think about when trying to assign values to variables with
substitution operators is that assigning a value to a variable has the same rules as
defining a variable normally from the command line or a script. Protected reserved
variables cannot be overwritten with a new value (for example, $1, $2, $3).

Listing 18 provides an example of how the variables work. Note that you can
combine several substitution operators, as shown in the last line of the script.

Listing 18. Using substitution operators

cat subops_examples

#!/usr/bin/ksh

_ARG1="${1}"
echo "Test 1A: The 1st argument is ${_ARG1-'ATC'}"
echo "Test 1B: The 1st argument is ${_ARG1:-'ATC'}"

_ARG2="${2}"
echo "Test 2A: The 2nd argument is ${_ARG2-'AMDC'}"
echo "Test 2B: The 2nd argument is ${_ARG2:-'AMDC'}"

_ARG3="${3}"
echo "Test 3A: The 3rd argument is ${_ARG3='PAC'}"
echo "Test 3B: The 3rd argument is ${_ARG3:='PAC'}"

_ARG4="${4}"

ibm.com/developerWorks developerWorks®

!$#@*%
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 17 of 21

http://www.ibm.com/legal/copytrade.shtml

echo "Test 4A: ${4:+'The 4th argument was supplied'}"

echo "Test 5: If the 4th argument was provided, the value
would be

${4:?'The 4th argument was not supplied.'}. Otherwise,
we will not

see this message and get an error instead."

_ARG8="${8}"
echo "${_ARG8:=${7:-${6:-${5:-No Arguments were supplied
after the 4th}}}}"

Listing 19 shows how to execute the script with no argument supplied.

Listing 19. Execute the script without arguments

./subops_examples
Test 1A: The 1st argument is
Test 1B: The 1st argument is ATC
Test 2A: The 2nd argument is
Test 2B: The 2nd argument is AMDC
Test 3A: The 3rd argument is
Test 3B: The 3rd argument is PAC
Test 4A:
./subops_examples[18]: 4: The 4th argument was not
supplied.

Listing 20 shows what happens when executing the script with only three arguments.

Listing 20. Execute the script with three arguments

./subops_examples arg1 arg2 arg3
Test 1A: The 1st argument is arg1
Test 1B: The 1st argument is arg1
Test 2A: The 2nd argument is arg2
Test 2B: The 2nd argument is arg2
Test 3A: The 3rd argument is arg3
Test 3B: The 3rd argument is arg3
Test 4A:
./subops_examples[18]: 4: The 4th argument was not
supplied.

Listing 21 shows what happens when you supply only four arguments.

Listing 21. Execute the script with four arguments

./subops_examples arg1 arg2 arg3 arg4
Test 1A: The 1st argument is arg1
Test 1B: The 1st argument is arg1
Test 2A: The 2nd argument is arg2
Test 2B: The 2nd argument is arg2
Test 3A: The 3rd argument is arg3
Test 3B: The 3rd argument is arg3
Test 4A: The 4th argument was supplied
Test 5: If the 4th argument was provided, the value would
be

arg4. Otherwise, we will not see this message and get

developerWorks® ibm.com/developerWorks

!$#@*%
Page 18 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

an
error instead.

No Arguments were supplied after the 4th

Listing 22 shows all five arguments supplied.

Listing 22. Execute the script with all five arguments

./subops_examples arg1 arg2 arg3 arg4 arg5
Test 1A: The 1st argument is arg1
Test 1B: The 1st argument is arg1
Test 2A: The 2nd argument is arg2
Test 2B: The 2nd argument is arg2
Test 3A: The 3rd argument is arg3
Test 3B: The 3rd argument is arg3
Test 4A: The 4th argument was supplied
Test 5: If the 4th argument was provided, the value would
be

arg4. Otherwise, we will not see this message and get
an

error instead.
arg5

Listing 23 shows seven arguments supplied. Note how arguments 5 and 6 were
ignored, because seven arguments were provided.

Listing 23. Execute the script with seven arguments

./subops_examples arg1 arg2 arg3 arg4 arg5 arg6 arg7
Test 1A: The 1st argument is arg1
Test 1B: The 1st argument is arg1
Test 2A: The 2nd argument is arg2
Test 2B: The 2nd argument is arg2
Test 3A: The 3rd argument is arg3
Test 3B: The 3rd argument is arg3
Test 4A: The 4th argument was supplied
Test 5: If the 4th argument was provided, the value would
be

arg4. Otherwise, we will not see this message and get
an

error instead.
arg7

Conclusion

After reading this article, you should have a better understanding of all those
"strange" characters UNIX users are typing. Knowing how to redirect data as stdin or
stdout, how to use the pipe, and how to use operators in UNIX helps you write more
powerful scripts with better error trapping and cleaner logic. Good luck!

ibm.com/developerWorks developerWorks®

!$#@*%
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 19 of 21

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Speaking UNIX: Check out other parts in this series.

• test command: See IBM's commands reference for the UNIX test command.

• Redirecting output to here-documents: See IBM's infocenter information on this
type of redirection.

• Input and output redirection: See IBM's infocenter entry on input and output
redirection.

• Wikipedia's pipeline entry: Read Wikipedia's excellent entry on pipelines in the
UNIX environment.

• Wikipedia's definition of the UNIX test command: Read Wikipedia's entry on the
UNIX test command.

• The AIX and UNIX developerWorks zone provides a wealth of information
relating to all aspects of AIX systems administration and expanding your UNIX
skills.

• New to AIX and UNIX? Visit the New to AIX and UNIX page to learn more.

• developerWorks technical events and webcasts: Stay current with
developerWorks technical events and webcasts.

• AIX Wiki: Visit this collaborative environment for technical information related to
AIX.

• Podcasts: Tune in and catch up with IBM technical experts.

Get products and technologies

• IBM trial software: Build your next development project with software for
download directly from developerWorks.

Discuss

• Participate in the AIX and UNIX forums:

• AIX Forum

• AIX Forum for developers

• Cluster Systems Management

• IBM Support Assistant Forum

• Performance Tools Forum

• Virtualization Forum

developerWorks® ibm.com/developerWorks

!$#@*%
Page 20 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www-128.ibm.com/developerworks/views/aix/libraryview.jsp?search_by=speaking+UNIX+Part
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds5/test.htm
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.baseadmn/doc/baseadmndita/redir_output_inline.htm
http://publib.boulder.ibm.com/infocenter/systems/topic/com.ibm.aix.baseadmn/doc/baseadmndita/input_output_redir.htm
http://en.wikipedia.org/wiki/Pipeline_(Unix)
http://en.wikipedia.org/wiki/Test_(Unix)
http://www-128.ibm.com/developerworks/aix/
http://www-128.ibm.com/developerworks/aix/newto/
http://www.ibm.com/developerworks/offers/techbriefings
http://www-941.ibm.com/collaboration/wiki/display/WikiPtype/Home
http://www-128.ibm.com/developerworks/podcast/
http://www-128.ibm.com/developerworks/downloads/?S_TACT=105AGY06&S_CMP=art
http://www-128.ibm.com/developerworks/forums/dw_forum.jsp?forum=747&cat=72
http://www-128.ibm.com/developerworks/forums/dw_forum.jsp?forum=905&cat=72
http://www-128.ibm.com/developerworks/forums/dw_forum.jsp?forum=907&cat=72
http://www-128.ibm.com/developerworks/forums/dw_forum.jsp?forum=935&cat=72
http://www-128.ibm.com/developerworks/forums/dw_forum.jsp?forum=749&cat=72
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=748
http://www.ibm.com/legal/copytrade.shtml

• More AIX and UNIX forums

About the author

Adam T. Cormany
Adam Cormany is currently the manager of the National Data Center, but he has also
been a UNIX systems engineer, a UNIX administrator, and operations manager for
Scientific Games Corporation. Adam has worked extensively with AIX as well as in
Solaris and Red Hat Linux administration for more than 10 years. He is an IBM
eServer®-Certified Specialist in pSeries® AIX System Administration. In addition to
administration, Adam has extensive knowledge of shell scripting in Bash, CSH, and
KSH as well as programming in C, PHP, and Perl. You can reach Adam at
acormany@yahoo.com.

Trademarks

IBM, AIX, eServer, and pSeries are registered trademarks of International Business
Machines in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other
countries.
Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

ibm.com/developerWorks developerWorks®

!$#@*%
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 21 of 21

http://www-128.ibm.com/developerworks/forums/dw_auforums.jsp
acormany@yahoo.com
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Pipeline
	Data redirection with >, >>, <, and <<
	Stdin, not stdout
	Subshells
	The test command, [], and [[]]
	Operators
	Conclusion
	Resources
	About the author
	Trademarks

