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The coupling of two waves due to the presence of a third wave with large
amplitude is studied. On the basis of simple model equations, the conditions
for excitation of the first two waves are discussed for the following three
cases: i) wi+ws=wo and oy, w; are large compared with their frequency
shift, i) o;<€w<Lwo and iii) w<Lwo<Sws, Where oy, oy are the unperturbed
frequencies of the two waves under consideration and w, is the frequency of
the incident large amplitude wave. In the first two cases, the excited wave
is found oscillatory, while in the third it is found non-oscillatory. The
threshold power of the incident wave for the onset of excitation, the frequency
shift at the threshold and the growth rate above threshold are calculated in

each case.

§1. Introduction

There exist a number of nonlinear instabilities
which can be classified as parametric excitations
of coupled waves. By parametric excitation of
coupled waves,* we mean the phenomenon which
can be described in the following way. Letthere
be a couple of normal modes or waves X and
Y with frequencies w; and w; in the linear system.
Then consider the situation in which these two
normal modes get interact with each other through
the action of another wave Z with frequency w,

* For the ordinary parametric excitation, see ref.

1).

in such a way that X (or Y) is forced to oscillate
at the beat frequency of Y (or X) and Z. If wo
is close to (wi-+wsz), then this forced oscillation
resonates with the natural oscillation, leading to a
resonant energy conversion between Z and the set
of X and Y. In particular, if the intensity of Z
is above a certain threshold value, there results
an unstable excitation of X and Y.

The following examples will illustrate the
phenomena.
i) The decay instability in a plasma.? For in-
stance, if there exists an electron plasma wave,
it decays into a couple of another electron plasma
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wave and an ion acoustic wave. As a result, the
ion acoustic wave can be excited in the presence
of a large amplitude electron plasma wave.

ii) The parametric plasmon-photon interaction.®
An intense microwave radiation with frequency
close to the electron plasma frequency can excite
a couple of an electron plasma wave and an ion
acoustic wave.

iii) The stimulated Raman and Brillouin scatter-
ing.# When an intense laser beam is shined on
liquids or solids, it is often scattered coherently
being accompanied by the excitation of a molecular
vibration. In this case, the scattered light and
molecular vibration are simultaneously excited by
absorption of the incident laser light.

iv) The optical parametric effect.® A laser light
with frequency w,, when shined on a medium, is
sometimes converted into a couple of coherent
radiations with frequencies o, and wo—w;.

A number of theories have been presented to
interpret these phenomena separately. There are
two basic problems; one is to derive a coupled
system of equations which describe the relevant
parametric process and the other is to solve these
equations and to investigate under what conditions
the instability occurs. Whereas the first problem
requires a treatment which depends on each
separate phenomenon, the second problem can be
discussed on a fairly general ground, since the
mathematical form of the coupled wave equations
is often of a similar structure.

The purpose of this paper is to construct a
general theory of the second problem; namely
we assume simple, but fairly general form of the
coupled wave equations and study the conditions
and properties of the instabilities which may occur
on the basis of these coupled wave equations. In
particular, we shall discuss the following problems.
i) By which parameters is the threshold for exci-
tation determined;

ii) at which frequencies does the instability set
in;

iii) how does the growth rate depend on various
parameters?

In § 2, we present a general framework of the
theory and derive the secular equation which
determines the condition for instability. The case
" in which o, and w, are large compared with their
shift due to the parametric coupling is studied in
§ 3. Section 4 is devoted to the case in which w;
is very small compared with w, and w.. It is shown
that there exist two distinct instabilities (oscillatory
for the case wo>w, and non-oscillatory for the
case wo<wsz).
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The general results obtained in this paper will
be applied to specific problems in the following
papers.

§2. Formulation

We consider the situation in which there exists

a large amplitude oscillation of the form
Z(t)=2Z, cOs wol . (1)

We treat Z, as an externally controllable para-
meter. Such treatment will be justified as long
as we are concerned with the instability condition
and with the growth rate at an initial stage. At
later stages, one has to consider the depletion of
Zo.

Let us assume that in the absence of Z the two
normal modes X and Y obey the wave equations
of the following form;

PX()= {% T 2F1%+w12}X(z):o (2)

[ _d
Y@ ldt2+2r 7

where w:, w; are the characteristic frequencies of
X and Y and [y, I'; are their damping constants.
Without losing generality, one can assume that
|01 <@zl

In the presence of Z, a coupling is induced
between X and Y. We assume that this coupling
can be written in the form

LX()=21Y(1) Z(1)

D8 Y(O)=pY(1) Z(1) (5)

where 2 and g are certain constants. In general,

Zand g, and hence their product, may become

complex. For simplicity, however, we shall re-
strict ourselves to the case

Ap=real>0 . (6)

Such is the case in which the ordinary parametric
excitation takes place.
If we take the Fourier transform of (4) and (5),

we get*
[@®— w2+ 2i 0] X (w)

+w22}Y(r):0 (3)

(4)

—I—ZZo[Y(w—wo)—i— Y(w—}—a)o)] =0 ( 7 )
[0 — w2242l 0] Y (w)
+pZ[X(0—w)+X(o+w)]=0  (8)

* In a more precise treatment, we have to treat Iy
and I as functions of @. This effect may become
important when a large frequency shift is expected.
However, we shall be content with discussing this
effect in the Appendix, since we find we can gain
very little by considering this effect, although the
formulas become considerably more complicated.
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where

X(0), Y(t):r dw et X(), Y() .

—0o0

(9

Equations (7) and (8) show that X(w) couples with
Y(w+wo) which in turn couple with X(w) and
X(w+2w). We assume that w, is sufficiently
large and that the approximate frequency match-
ing condition

W= w1+ ws (10)
is satisfied. We are interested in the frequency
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range in which Rew=w;. Then one can neglect
X(w=+2awy) since the latter represent the response
of X at off-resonant frequencies.*.** In this
approximation, egs. (7) and (8) are reduced to a
linear homogeneous system of equations for X(w),
Y(o—wo) and Y(w-+wo). Setting the determinant
of the coefficient matrix equal to zero, one obtains
the secular equation which determines the fre-
quency and damping (or growing) of the waves
under consideration

[wz—w12+2iflw] ZZ() ZZO
1Z, [(0—wo)2— w2+ 2il s(w—wo)] 0 =0. (1)
¢Z, 0 [(@+ wo)2— w22+ 2iI" s(w+ wo)]

If we write the solution of (11) in the form
(12)
then x and (—y) respectively give the frequency

and damping rate of the new normal mode. This
new normal mode becomes unstable if
y>0. (13)

We note that the instability of this normal mode
can be observed through the growth of X and Y
at frequencies x and (x+w,), respectively. Indeed,
for w= +ws, we have the coupled equations for
Y(w), X(oFwoy) and Y(wF2wy). The secular
equation derived from these coupled equations
assume exactly the same form as (11) except that
o in (11) is now replaced by (eFw,). We note
also that the waves at these three frequencies
grow simultaneously in time with the same growth
rate y.

In the following sections, we shall solve (11)
under a variety of conditions.

w=x-+1Ly

§3. Nearly Free Resonance

Let us first consider the case in which |w,| is
large compared with its frequency shift. In this
case, one can neglect Y(w+w,) as being off-
resonant. Moreover, if the damping is small,
one can approximate as

[0 —w:2+2il0) =20 [w0—o+il]  (14)
[(a)—wo)z——a)22-i—2ifz(a)—mo)]
= =2wilw—wo+we+ils] . (15)

Using these approximations, one can write the
secular equation as

Z 2
[w—w1+iF1][w—wo+wz+iF2|+1—‘“L—:0 . (16)
4w

2
We introduce the notation
wy— w1 —wz=4 17
wZe=K . (18)
In this notation, 4 denotes the frequency mis-
match and K corresponds to the power of the

incident wave. Using this notation and separating
the real and imaginary parts of (15), one obtains

(x—w)(x—o1—D)—(y+T)(y+12)

K

=0 19
4wz (19
(x—o)@y+ T+ T)=d(y+I) . (20)

Eliminating x, we get

{1 42 }# K

(_}’—l-f'l)(}’-l-]—'z)l + Tt Ty = o
2y

Since by assumption 'y, I'; and K are all positive,
eq. (21) has a growing solution only when wiw:
>0, or since w, is positive, w; >0 and w:>0. For
positive value of y, the left hand side of eq. (21)
is greater than I",/";, so that in order to have
an instability K must be at least greater than
dwiwel"1I";. In other words, there exists for the
value of K a definite threshold above which a
growing solution appears. Setting y=0 in (21),
one obtains this threshold value K,(4) as

AZ
K=K 1 _*} 2
@ { +(F1+F2)2 @)
where
Kp=4w w011 (23)

* We cannot neglect Y(w+wy), since we are not excluding the case |o;|<|ws]| (see § 4).
*k  This approximation fails when w24 we?—ws2+2il0=0 or w= +vV @2 —w2—1s% —ils. In the following,
we shall exclude this case; one can show indeed that the growing modes discussed below do not satisfy this

condition (see also § 4 Footnote).
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is the minimum threshold value which is attained
when the exact frequency matching condition is
satisfied;

4=0.

We see from (22) that the threshold value for K
is finite only when either of I"y and I'; is nonzero.
In other words, if one of I’y and I'; is zero, both
waves, X and Y, can be excited simultaneously
at an infinitesimal incident power.

@24

At the threshold, the frequencies of X and Y

are given by

I
= A for X and
x w1+F1+F2 an ]
r (25)
—wy = —ws————4  for Y. s
X— o (O] F1+Fz or

Thus under the condition of minimum threshold
(see (24)), the frequency shift of X and Y vanishes.

If we solve (22) for 4 as a function of K, we
obtain the frequency region of w, in which the
instability occurs at given incident power:

4] <<11+r2>,/ K Ks

The maximum growth rate y, above threshold
can be calculated from (21) by setting dy/d4=0.
We find

Yyn(K)
1 K
:7{ —(+-T1) +‘/(F1—F2)2+ }
[OIXOF

@7

(K>Kn) . (26)

which is attained under the condition (24).
Finally, let us consider the region well above
threshold. Neglecting I"; and I"; compared with

¥y, we get
L / K
=5V oo 2 28)
x=w1+4/2 . (29)

We see that the growth rate increases like VK,
while the frequency shift (x—w;) stays 4/2 being
independent of K. These results are, however,
valid only when the frequency shift is small
compared with w;.

§4. Low Frequency Oscillation

If |@1| < |ws|, as is the case in which X represents
a long wavelength acoustic oscillation, the treat-
ment of §3 can no longer be used. Indeed, in
this case the frequency shift may become com-
parable to or even greater than w;, so that one
can no longer neglect Y(w-+w,) as off-resonant.
We then have to solve the full secular eq. (11).
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Assuming that wy = w is large, one can approxi-
mate*
[wiwo]z—l—Zi[win]Fg—wzz

= +2wa{w =t [wo—wz]+il s} . (30)
The secular eq. (11) can then be written as
[0+ 2iw] 1 —w:?]
K 1 1
- ZwZ{ w+0-+il; T w—04il, } S
where we put
d=wo—ws . (32)

From the structure of eq. (31), one easily sees the
possibility of the following two solutions:
iy o=iy (x=0); }

.. (33)
i) o=x+iy (x0).

i) o=iy:

In this case, the response of X occurs at zero
frequency, while that of Y at the same frequency
as that of the incident wave Z.

Substituting (33) into (31), one gets

o+ (y+r 2)2}{y2+2yF1+w12}+w£5=0 . (34
2

This equation has a growing solution only when
d<0, namely only when the frequency of the
incident wave is smaller than w,.

The threshold power for excitation is obtained
by setting y=0in (34):

K(3) = _%{WHZ} . (35)

This is independent of I’y in remarkable contrast
to the case of §3. The right hand side of (35)
assumes the minimum value

Km=2w12w2f’z (36)
at the frequency

(l)o:(!)z——rz . (37)
Above this minimum value, the frequency range
in which excitation occurs is given by

_ K _K. 2 2K 2
_,K__\/giKm I:>0> _ﬁ_\/[]g_ﬁ’”‘_f'z .

(38)
Let us calculate the growth rate. First in the
threshold region, we obtain by linearizing (34)
with respect to y as
- —0[K—K(9)]
YT s+ 203+ Ted)ws
This quantity assumes the maximum value

(39)

* This approximation fails when the condition
|wo— w3 |>|w?|jwz, |20|/wp is not satisfied. In the
following examples this condition is always satisfied.
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K—Kn
2w2[w12+2F1F2]
at the frequency given by (37).

Next, for y much greater than I'i, I'; and o,

Y= (39a)

we get
yaglre /oK L@
which assumes the maximum value
1/3
Vm =<£> (40a)
2(02
at the frequency
1/
wo:wz_(£> Y (40b)
2([)2

Namely, the maximum growth rate well above
threshold is proportional to the cube root of the
incident power. The approximation is valid
when

K> w03, 0213, w:I5° .

Finally, we calculate the maximum growth rate
in the intermediate value of K. The condition for
maximum growth rate is obtained from (34) by
setting dy/dé6=0. The frequency at which this
condition is satisfied is given by

cuo:wz—(ym-!-['z) .
We shall quote the results for two limiting cases.
Case a) w1 >[; and 202w > K> Kn:

IR )
™ 2wi2ws
41
L i (D)
0— W2 2&)12&)2 .
Case b) [ >w:and 22w > K> K
. K
yozy/ 2wl } 42)
wol—?a)z-—rz .

We see that y, shows a variety of K-dependence
according to the relative magnitude of the para-
meters. Note that we have assumed that I'y is
smaller than w;.

if) o=x4iy (x=0): (12)
Substituting (12) into (31) and separating the
real and imaginary parts, we get

[P —y* =2y —w?]

=[xt (TR, ) (43)
2yt l=2ay+ TPy (49
where
F(x, y) =l 07+ (y+ T
){e—dpH (T . (49)
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We first see from (44) that for x=c0 a growing
solution ( y>0) is possible only when F(x, y)>0,
or equivalently only when ¢>0. In other words,
an oscillatory growing solution is possible only
when the frequency of the incident wave is greater
than w,.
Eliminating F(x, y) from (43) and (44), we get
2 — 1 3 2
Xt = 2+t T {2y° 43"+ 1)y
+(F22+4F1F2—{—52+w12)y
+(Lew 2+ 1102+ 11022} .

On the other hand, from (44) and (45)
xt=—[(y+12)"—0]
l }’+F 0)2
Equating the right hand sides of (46) and (47), we
can calculate the growth (or damping) rate y as a
function of K and 4.

First we calculate the threshold value K.(0).
Putting y=0 in (46) and (47) and equating the
results, we get

Fngwz {452+[F22+2F1F2—'r6012—52]2} '
(48)

(I 41
This quantity vanishes if one of I", and I'; is zero,
as in the case of § 3. The frequency x=x, of X
at the threshold is given by

(46)

—4(y _|_[’2)252} . (47)

K.(8) =

1/2
xc_+fl T [rzm12+rlaz+rlr22]}
(49)
The minimum value of threshold is determined
by the condition dK./d§=0; this condition can be

written as
3644282 [(I 1+ o)*— w2+ 117
—[(F1+F2)2+w12—F12]2=0 (50)
We shall investigate these expressions in some
limiting cases.
Case a) wiy[::
Assuming o >1"1, we get

= ' j452 [a)12_62] \f 5
K. (0) = 3 l +[F1+Fz]2f (51)

= a1 AV I 52
xes o] +r1+r2[< +w1> 1} 52)

where 4=5—a; is the frequency mismatch defined
by (17). We see from (52) that the frequency shift
at the threshold may become quite large if the
frequency mismatch is large compared with ;.
In the other limit in which 4 is small compared
with w;, one can approximate

5;_70)1 s —52::,—2(01A .

(43)
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Substituting (53) into (51), we recover eq. (22).
Equation (51) assumes the minimum value

2
Km'_—.40)1wzrlpz{ 1— Iy } (54)
4(012
at the frequency
2
Wy = w1+ ws— A (55)
2&)1

where we neglected the term of order (I":/w;)* as
compared with unity. The frequencies of X and
Y at the minimum threshold are respectively

given by
ry?
= I—0
* o |: 2w12j|

Iy >7
2(012 j'
We see that at the minimum threshold the fre-
quency shift is relatively small.

(56)

XeE@o=F ws, i{wz+2w1< 1— (57)

Case b) I >wi>1: (58)
In this case, we have from (48) and (49)
F1a)z
K.(0) = —={[":2+0%)2
© an{ 2?+-0% (59)
Xe=m Vol T (1+62T59 . (60)

If ¢ is small compared with I"s, the frequency of
X at the threshold is relatively insensitive to the
frequency of the incident wave. However,
depending on the relative magnitude between w,?
and I"i[,, the frequency of X shows a markedly
different character. Indeed, whereas for

02> (61)
the frequency shift is relatively small, for
F1F2>>w12 (62)

the frequency of X is determined not by w, but
by the damping rates.

The minimum value of the threshold is given
by

Kn=Y 3160, "5

9 (63)
which is attained at the frequency
Wo= w2+71—?—['2 . (64)
There the frequency of X is given by
xc:? ix/ahz—l——g*['lpz . (65)

We can see a large frequency shift in the case of
(62).

Finally, let us calculate the growth rate well
above threshold. Neglecting I'y, I’ and o; as
compared with y, we get
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._ 0 1 /Ks
s —— — [ 27 66
V==t (66)
This quantity assumes the maximum value
. 3/ K 1/3
at the frequency
1/8
Wo=—w2 —|—< K ) (68)
4we
where the frequency of X is given by
5 K 1/8
= +— . 69
* -2 (4(1)2) ( )

We can see a characteristic cube root law for the
dependence of y,, 6 and x on K.

§5. Conclusion

Based on simple model equations (see (2), (3),
(4) and (5)), we have examined the conditions and
properties of the parametric excitation of coupled
waves. The main results obtained may be sum-
marized as follows.

1) If the frequency w, of the incident wave is
greater than the two natural frequencies w; and
2 (01 <ws) of the coupled waves under conside-
ration, an oscillatory wave can be excited.

2) The threshold power of the incident wave for
the onset of this instability is proportional to the
product of the two damping constants /'y and [,
of the two waves.

3) The frequency of the excited low frequency
mode at the threshold is approximately equat to
+o; if 2> 1", and is proportional to ++/1"11"y
if 02T s.

4) Under the condition that o, is large compared
with the frequency shift, the growth rate becomes
maximum when the exact frequency matching
condition (24) is satisfied.

5) If wo is smaller than ws, a nonoscillatory wave
can be excited.

6) The threshold power for this instability is
independent of I';.

7) For either type of instabilities, the maximum
growth rate well above threshold is proportional
to the cube root of the incident power.

8) The same cube root law holds for the fre-
quency shift above threshold.

In the present paper, we have assumed that 2y
and hence K is real positive. However, in some
cases K has to be treated as complex.® Then the
secular eq. (31) no longer contains the first type
of solution (Rew=0), excepting the case in which
the imaginary part of K vanishes at Rew=0. The
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low frequency growing wave in the region w, <z
becomes in this case oscillatory.
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Appendix

In the text, we have assumed that the various
parameters (w1, ws, I'1, I'2, Aand p) are all in-
dependent of @. This assumption, however, may
not be justified when a large frequency shift is
expected. In particular, the dependence of Iy
on the real part of @ (Rew=x) seems to have the
most important effect that has to be considered in
actual problems. In this Appendix, we shall
discuss this effect. Out of two cases (i) x=0 and
ii) x2¢0) discussed in §4, only the second case
with I'2>w,>1"; is to be considered; in the other
cases, the effect of the x-dependence of ['; is of
little importance on the results.

We start from (59) and (60) where we now treat
I’y as a function of x which at the threshold is
given by (60). Since ['y is invariant under the
time reversal, it must be an even function of x.
We examine how the condition for the minimum
threshold is to be modified. Differentiating (59)
and (60) with respect to J, we get

dK, 1
s = F1[’2(U2< 1"!"5_2‘)
1 dx.?
3g2—1 1¢2 .
R e e O
dx.? .
=248 (A2)
where we put
ofl'e=¢, I dljdx*=p. (A-3)
We shall restrict ourselves to the region
dx.*
0 4
& (A-4)
or equivalently
B<(d+e3)t. (A-5)

The inequality (A-4) is a sufficient condition in
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order that the threshold conditions (59) and (60)
are satisfied at a real frequency x..
Substituting (A-2) into (A-1) and setting the
result equal to zero, we get
3142821 +8MB{1—(1+E98 =0 . (A-6)
Since B is a function of x, and hence of &, it is not

easy to solve (A-6) in a general case. If in parti-
cular § is small compared with unity, we obtain

1 8 1\)
e ) —— = A7
sugiiet (7)) @
or more explicitly
_ T 4 . dl)
0= —=1 1—-T" . (A8
'v3{ 9" Tdx? [saryvs (A-8)

Equation (A-8) can be considered as the generali-
zation of (64). Substituting (A-8) into (59) and
(60), we obtain

K,n:l/;léwzrlrzz{ 14 ?1; ﬁ2<52%)}
(A-9)
x02:w12+‘g—F1Fz{ 1—%5 (sz%)} . (A-10)

From (A-8) to (A-10), we see that the considera-
tion of the w-dependence of ['; yields only a small
correction to the results of § 4, provided that 8 is
small compared with unity.

References

1) N. Minorsky:  Nonlinear Oscillations (D. Van
Nostrand Company Inc. 1962) Chap. 20.

2) V.N. Oraevskii and R. Z. Sagdeev: Soviet Phy-
sics-Technical Physics 7 (1963) 955.
Y. Ichikawa: Phys. of Fluids 9 (1966) 1454.

3) See, for instance, V.P.Silin: Soviet Physics-
JETP 21 (1965) 1127. ,
M. V. Goldman: Ann. Phys. 38 (1966) 95, 117.

4) See, for instance, Y.R. Shen and N. Bloembergen:
Phys. Rev. 137 (1965) A1787.
N. Bloembergen: Nonlinear Optics (W. A. Ben-
jamin Inc. 1965) Chap. 4.

5) See, for instance, N. M. Kroll:
(1962) 1207.
N. Bloembergen: ibid.

6) T. Amano and M. Okamoto:
cation.

Phys. Rev. 127

private communi-




