
Examples of Fokker-Planck equation solving 

A) Electron-ion relaxation 

It is process of temperature equalization between electrons and ions. In first 

approximation one can assume homogeneous neutral plasma, and thus 

distribution functions vary in time only as a result of collisions 
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As momentum relaxation proceeds faster than temperature balancing, we can 

assume that electrons and ions have Maxwell’s distributions with diff. tempers 
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and for temperatures Ta = Tb this expression is the component of vector 

parallel with mutual velocity of particles and collision integral kernel is 

orthogonal to such vector, and thus collisions of particles with the same 

temperature produce no contribution. 



We shall calculate the second moment of distribution function 
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Last term in brackets is orthogonal, thus it does not contribute and thus 
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where collision frequency for energy exchange is 
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Let index a denotes electrons, index b ions. Quadratic term in expansion via 

small ion velocity is the lowest that provides nonzero contribution. 

Then the integral is expressed as follows 
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and after substitution the collision frequency reads 
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where ei is effective collision frequency for momentum transfer. Here, we could 

not assume nonmoving ions, as there would be no energy transfer. 

B) Symmetrizing of electron distribution function 

Often, it happens that temperature electron T along magnetic field differs from 

temperature T⊥ in direction perpendicular to magnetic field. Thus, Maxwell’s 

distribution with different longitudinal and transverse temperatures is assumed 

 



We omit for simplicity collisions between electrons, which is possible if 

. We assume nonrelativistic temperatures. If ion temperature is not 

substantially higher than electron temperature, we can omit ion velocities in 

comparison with electron ones and electrons change the motion direction during 

scattering on non-movable heavy scattering centers. This assumption simplifies 

collision integral significantly, the term with the derivative of ion distribution 

disappears after integration and  

 
The first term in the square brackets disappears after summation (it corresponds 

to the symmetric Maxwell’s distribution) and thus  

 



We multiply this kinetic equation by terms ( )2 2 / 2x y e ep p m n+  a
2 / 2z e ep m n and

integrate over momentum space. We obtain equations for temperature evolution 

, 

where at small temperature difference , the collision frequency is 
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If one additionally includes mutual electron collisions, then the collision 

frequency reads, as follows 
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C) High-frequency plasma conductivity and collisional absorption 
 

Let us assume plasma with constant electron density ne and with neutralizing 

background of nonmoving ions. Electric field of electromagnetic wave is treated 

dipole approximation 0 cosE E t= . Action of magnetic force can be neglected 

for nonrelativistic intensities. 

Kinetic equation for electrons then reads as follows 
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where qe = -e, qi = Ze, 
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0ln / (8 )e e eiA Ze m n =   and the term Cee(fe) 

represents mutual electron collisions. Mutual electron collisions affect the 

symmetric part of the distribution function, but they do not directly influence the 

asymmetric part caused by the electric field, and thus, they can be omitted in 

calculation of conductivity. Angular eigenfunctions of the operator of electron-

ion collisions are spherical harmonics, the distribution function can be expanded 

into series of spherical harmonics. Let us assume electric field in z direction. For 

weak field, when oscillatory velocity is << thermal one, it is enough to assume 
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Then linearized kinetic equation reads as follows 
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While f0 is slowly varying, E a f1 oscillate with frequency .  

We shall use complex notation ( )0 expE E i t= −  and then  
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We denote ( ) ( )
2

31/ 1 2 /g p A p = +
   ; function g(p) 1 with exception of 

small neighborhood of point p=0. The imaginary part of the current leads to the 

contribution ( )2 2 2/p ei  − +  to the real part of permittivity. Real part of f1 leads 

to absorption of electromagnetic wave and Joule heating. Absorbed power is 

then 



( ) ( ) ( )

( )

( ) ( )

2
3 0 0

0 1 3

2
3 2 20 2 0 0

2 2

0 0

2 2

2 0 0 2 0
02 2

0

1 2
Re v d

2 2

d d cos 2 sin

4 4
d 0

3 3

z z
abs z

e

e

e e

eE eEp p A
P jE E e f p p g p

p m p p

g pf e E A f
p p d p

p m p p

e E f e EA A
p g p f p

m p m



 

   


 

 





 
= = − = −  

 

 
 = − =

 


= −  =



 

 


. 

Collisional (inverse bremsstrahlung) absorption has only negligible influence 

on the shape of the distribution function f0, if electron-electron collisions are 

frequent enough . This condition is equivalent to the condition 

. This condition need not be met for many times ionized plasma 

even if our original assumption  holds. In such case, collisional 

absorption leads to non-Maxwellian electron distribution. If there holds 

, electron-electron collision may be entirely omitted. If f1R denotes 

real part of f1 and  averaging over angles, then 
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When using the approximation g(p)  1 and substituting for f1R, the equation has 

the following form 
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We search for solution that does not change its form in time (self-similar 

solution). The solution is assumed in the following form 
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Thermal momentum q(t) is thus described by the following equation 
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Solution of equation for f0 converges asymptotically to this shape from any 

initial distribution. This distribution function modification is called the Langdon 

effect - A.B. Langdon, Phys. Rev. Lett. 44, 575 (1980).  



D) Electron thermal conductivity of plasmas 

  
Ion heat flux can be omitted due to small ion thermal velocities. Simple 

illustrative procedure will enable us to determine the electron thermal 

conductivity with accuracy up to a constant of order 1. Plasma with constant 

density and with temperature gradient is assumed. According to a crude picture, 

positive flux is caused by electrons moving from place in distance of the mean 

free path lf back from the point x and negative flux is carried by electrons from 

x+lf. Then  

 



and flux Q does not depend on density, as mean free path . 

This derivation also demonstrates that the usual expression for thermal flux via 

temperature gradient is only the first term of Taylor expansion, and thus it holds 

only, if the temperature scale length LT is >> mean free path lf. 

Now we derive thermal flux from Fokker-Planck equation. Ions are assumed 

nonmoving and we assume that current has to be zero for quasineutrality 

conservation. Thus, heat flux will be accompanied by the formation of an electric 

field. Let us assume temperature gradient in x direction. Then 
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Then following equation holds for f1 
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Again, we shall assume Z>>1 and we omit the impact of electron-electron 

collisions. Then f1 is expressed as follows 
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We obtain electric field E from requirement of zero electron flux 
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a function f1 is thus 
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The heat flux Q is obtained after integration 
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The largest part of heat flux is carried by electrons with . 

Spitzer and Härm (Phys. Rev. 89 (1953), 977) calculated heat conductivity 

numerically including also electron-electron collision. Numerical result is 

approximated with a good accuracy by the formula ( )
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Left panel - Distribution function f1v5 relevant for electron heat flux for various 

k⊥e (k⊥ = 2/LT, where LT is temperature scale length; e is the mean free path 

of electron with thermal velocity vTe): k⊥e = 0 (dashed line – Spitzer-Harm 

thermal flux); k⊥e = 0.01 (a); k⊥e = 0.05 (b); k⊥e = 0.2 (c) 

Right panel – The ratio of heat flux q to classic Spitzer-Harm heat flux qSH in 

dependence on k⊥e and on parameter  for collisional absorption of laser 

radiation. [power m = 2 + 3/(1+ 1.67/ ) in the distribution exponent] 
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