Examples of Fokker-Planck equation solving

A) Electron-ion relaxation
It Is process of temperature equalization between electrons and ions. In first

approximation one can assume homogeneous neutral plasma, and thus
distribution functions vary in time only as a result of collisions
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As momentum relaxation proceeds faster than temperature balancing, we can
assume that electrons and ions have Maxwell’s distributions with diff. tempers
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and for temperatures Ta = Tp this expression is the component of vector
parallel with mutual velocity of particles and collision integral kernel is
orthogonal to such vector, and thus collisions of particles with the same
temperature produce no contribution.




We shall calculate the second moment of distribution function
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Last term in brackets is orthogonal, thus it does not contribute and thus
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where collision frequency for energy exchange is
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Let index a denotes electrons, index b itons. Quadratic term in expansion via

small ion velocity Is the lowest that provides nonzero contribution.
Then the integral is expressed as follows
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and after substltutlon the collision frequency reads
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where i Is effective collision frequency for momentum transfer. Here, we could
not assume nonmoving ions, as there would be no energy transfer.

B) Symmetrizing of electron distribution function

Often, it happens that temperature electron T along magnetic field differs from

temperature T, in direction perpendicular to magnetic field. Thus, Maxwell’s
distribution with different Iongitudinal and transverse temperatures is assumed
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We omit for simplicity collisions between electrons, which is possible if

q; > is not

substantially higher than electron temperature, we can omit ion velocities in
comparison with electron ones and electrons change the motion direction during
scattering on non-movable heavy scattering centers. This assumption simplifies
collision integral significantly, the term with the derivative of ion distribution
disappears after Integration and
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The first term in the square brackets disappears after summation (it corresponds
to the symmetric I\/Iaxwell’s distribution) and thus
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We multiply this kinetic equation by terms (px + py)/ 2m.n, 3 p; /2m,n, and
Integrate over momentum space. We obtain equations for temperature evolution

where at small temperature difference I =1 = T, the collision frequency IS
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If one additionally includes mutual electron collisions, then the collision
frequency reads, as follows
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C) High-frequency plasma conductivity and collisional absorption

Let us assume plasma with constant electron density ne and with neutralizing
background of nonmoving ions. Electric field of electromagnetic wave is treated

dipole approximation E = E,cost , Action of magnetic force can be neglected

for nonrelativistic intensities.
Kinetic equation for electrons then reads as follows
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where qe = -6, qi = Ze, A=Ze'mn InA;/(B75;) and the term Ceo(fo)
represents mutual electron collisions. Mutual electron collisions affect the
symmetric part of the distribution function, but they do not directly influence the
asymmetric part caused by the electric field, and thus, they can be omitted in
calculation of conductivity. Angular eigenfunctions of the operator of electron-
lon collisions are spherical harmonics, the distribution function can be expanded
Into series of spherical harmonics. Let us assume electric field in z direction. For
weak field, when oscillatory velocity is << thermal one, it is enough to assume
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Then linearized kinetic equation reads as follows
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While fo Is slowly varying, E a f1 oscillate with frequency w.

We shall use complex notation E = Eo exp(—iat) and then
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We denote 9(P) :1/[“(2'6‘/ P ) } - function g(p) =1 with exception of
small neighborhood of point p=0. The imaginary part of the current leads to the

contribution —0)5 / (602 +Vezi) to the real part of permittivity. Real part of f; leads

to absorption of electromagnetic wave and Joule heating. Absorbed power is
then
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Collisional (inverse bremsstrahlung) absorption has only negligible influence
on the shape of the distribution function fo, If electron-electron collisions are
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frequent enough Vee osc, This condition is equivalent to the condition

4 Vosc < VTe . This condition need not be met for many times ionized plasma

even if our original assumption V7e = Vose holds. In such case, collisional
absorption leads to non-Maxwellian electron distribution. If there holds

2 2
Z Vo > V1. | electron-electron collision may be entirely omitted. If fir denotes
real part of f1 and () averaging over angles, then
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When using the approximation g(p) = 1 and substituting for fir, the equation has
the following form
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We search for solution that does not change its form in time (self-similar

solution). The solution is assumed in the following form
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Thermal momentum q(t) is thus described by the following equation
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Solution of equation for fo converges asymptotically to this shape from any

Initial distribution. This distribution function modification is called the Langdon
effect - A.B. Langdon, Phys. Rev. Lett. 44, 575 (1980).




D) Electron thermal conductivity of plasmas
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lon heat flux can be omitted due to small ion thermal velocities. Simple
Illustrative procedure will enable us to determine the electron thermal
conductivity with accuracy up to a constant of order 1. Plasma with constant
density and with temperature gradient is assumed. According to a crude picture,
positive flux is caused by electrons moving from place in distance of the mean
free path If back from the point x and negative flux is carried by electrons from

X+ls. Then
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and flux Q does not depend on density, as mean free path lp=vp /v ~1"1 n

This derivation also demonstrates that the usual expression for thermal flux via
temperature gradient is only the first term of Taylor expansion, and thus it holds
only, If the temperature scale length Lt is >> mean free path It

Now we derive thermal flux from Fokker-Planck equation. lons are assumed
nonmoving and we assume that current has to be zero for quasineutrality
conservation. Thus, heat flux will be accompanied by the formation of an electric
field. Let us assume temperature gradient in x direction. Then
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Then following equation holds for f1
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Again, we shall assume Z>>1 and we omit the impact of electron-electron
collisions. Then f; Is expressed as follows
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We obtain electric field E from requirement of zero electron flux
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a function f1 i1s thus
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The heat flux Q IS obtained after integration
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The largest part of heat flux is carried by electrons with =3Vr, = 3‘/k L. /m,
Spitzer and Harm (Phys. Rev. 89 (1953), 977) calculated heat conductlwty
numerically including also electron-electron collision. Numerical result is

approximated with a good accuracy by the formula & = %o (1+3 Bz) .
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Left panel - Distribution function f1v° relevant for electron heat flux for various
KiAe (k. = 274/L7, where Lt is temperature scale length; Ae is the mean free path
of electron with thermal velocity vre): kide = 0 (dashed line — Spitzer-Harm
thermal flux); k. 4e = 0.01 (a); ki 4e = 0.05 (b); ki4e = 0.2 (C)

Right panel — The ratio of heat flux g to classic Spitzer-Harm heat flux gsn Iin
dependence on k;Ae and on parameter a for collisional absorption of laser
radiation. [power m = 2 + 3/(1+ 1.67/ &%) in the distribution exponent]



