
Plasma Atomic Physics 
• Designation of charge states  
Ionization degree      0+,  1+,   2+,     3+,  …. Z+  
Atom Y                    YI          YII,       YIII,      YIV  
Carbon C (Z=6)       CI,       CII,       CIII,   CIV,    CV,  CVI,  CVII  
Isoelectronic series C-like,    B-like,   Be-like,    Li-like,    He-like,  H-like,  nucleus  
 

• Atomic states  
- Ground state  
- Excited states (resonance states – 1 electron from outer shell excited to higher 

shell)  
- Autoionization states (bound states with energy higher than ionization potential 

– electron excited from inner shell or more excited electrons) – spontaneous 
non-radiative transition to continuum possible  

 

• Units – cgs units  

radius normalized on Bohr radius a0 ( )  
energy in units Rydberg 1 Ry =1 R∞ = e2/2a0 = 13.6058 eV = 109737.3 cm-1 

  



Solution of Schrödinger equation 
 

• Time-independent Schrödinger equation  

 
Wave function ψb is a function of one-electron states ϕj 

 
Wave function has to be antisymmetric with respect to exchange of any  
2 electrons 

 
Wave functions have to be orthonormal 

 
  



Atom (ion) with 1 electron 
 

• Schrödinger equation  Hϕ = Eϕ 

 

  
a0 – Bohr radius 

• Solution     ,  

where n = 1, 2, …- principle quantum number, l = 0, 1, …, n-1 
characterizes orbital angular momentum, ml = -l, -l+1,…, l-1, l is 
orientation of angular momentum and ms = -½,+½ is spin angular 
momentum orientation 

• Operators of angular momentum (L2, Lz, S2, Sz, J2, Jz) 
J2 = J⋅J = Jx2 + Jy2 + Jz2 - eigenvalues       j(j+1) - j=0, ½, 1, 3/2, 2,…  
Jz – eigenvalues  m (m = -j, -j+1, -j+2,…,j-1,j) 



Orbital and spin angular momentum 
                                       Semiclassical picture for J = 2, 3/2 

• Eigenfunctions of operators L2, Lz  
of orbital angular momentum 

 
 - Spherical harmonics are orthonormal  

   
 Sum over m -spherically symmetric electron density  
 - Nomenclature of orbital angular momentum 

s (l = 0)   p (1)   d (2)   f(3)   g(4)   h(5)  i(6)  k(7)   l(8)  m(9)   

• Electron spin – electron has internal angular momentum    j = ½  
(z component ms = - ½, ½), eigenfunctions                  and 

 
  



Radial part of the wave function 
• Radial equation – bound state   

 

• Substitution      

 
• Analytic solution 

 
where the associate Laguerre polynomial is 

 
phase convention used             



Radial part of wave function 

   
Radial wave functions (full line) and effective potential (dotted) for the lowest s and p states 

• Number of nodes (zeros) is n-l-1, number of extremes is n-l  
• For atoms with more than 1 electron, potential V has no simply expressible 

form and analytic solution cannot be found  
• Numerical solution – E is iterated for given number of nodes 



Orbits and relativistic corrections 
• Hamiltonian with relativistic corrections  

 
where fine structure constant  
– 3rd term – result of relativistic change in mass of 

electron (mass-velocity term) 
– 4th Darwin term – relativistic non-localizability 
– 5. spin-orbital term – magnetic interaction of spin  

and orbital magnetic moments  
– Mass-velocity and Darwin terms → only shift of level energies 
– Spin-orbit coupling leads to splitting of energy levels with l ≠ 0 

Operator l.s = ½(j2 - l2 - s2) – eigenvalues     

and shift   
where [] = l for j = l + ½ and [] = -(l+1) for j = l - ½  

  

Elliptic Bohr-Sommerfeld 
orbits for hydrogen atom  
 



Complex atoms 
• Hamiltonian 

 
(mass-velocity and Darwin terms omitted – only energy shift after solving) 
- Solution is a linear combination of functions Ψb  

 
 - System of linear equations is solved (M base functions) 

  energies Ek – eigenvalues 
 

- Base functions composed of single-particle wave functions - antisymmetric  

sum over all permutations  
- Base functions – eigenfunctions of total J2 and Jz    -  
- Equivalent electrons - same nl – w electrons in subshell  (nl)w  
- Closed subshells k (s2, p6, d10, f14, ..,) have Lk = Sk = Jk = 0   
- Example Ne I 1s22s22p53s usually denoted Ne I 2p53s (closed omitted) 



Detailed structure of energy states 
• First – radial wave function and average energy of configuration 
• Then energy splitting inside one configuration (angular momenta coupling) 
– Coupling of 2 angular momenta j1,m1 and j2, m2 not commutative, coupled 

 
is eigenfunction of 4 operators J12, J22, J2 = (J1 + J2)2, Jz = J1z + J2z  
C() are Glebsch-Gordon coefficients 

– Coupling of 3 angular momenta more complicated (not associative) 
• Coupling schemes 
– LS coupling (Coulomb repulsion >> spin-orbit interaction) 

basic splitting according to L = Σi li and S = Σi si , then L a S are coupled 
J = L + S to form eigenfunctions of J2, Jz – notation 2S+1LJ – 2S+1 -
multiplicity, o – odd parity, e.g.  

– jj coupling (for high Z - spin-orbit interaction >> Coulomb repulsion) 

li + si = ji , J and M – sum of ji – for 2 electrons  
– other coupling schemes (LK, jK), intermediate coupling 



Diagrams of energy states 

 
 
 
 
 

Scheme of splitting of energy levels of pd 
configuration in conditions of LS coupling 
starting from averaged Eav and gradually 
adding large Coulomb interaction, spin-orbit 
interaction and external magnetic field 

Scheme of energy levels of pd 
configuration in conditions of jj 
coupling, 2 strong spin-orbit 
interactions lead to 4 energies; small 
splitting due to Coulomb repulsion   



Atomic physics of plasma 

Absence of other particles than nuclei and free electrons possible only very low Z 
ionization degrees  0+, 1+, …, Z+ 
atom Y    YI,YII,… 
carbon C   CI, CII, CIII, 
  CIV,  CV,  CVI,  CVII 
Li-like He-like H-like nucleus 

 

Schematics of energy states  
singlet 
1s2s 1S L=0  S=0  g=1 
triplet 
1s2s 3S L=0  S=1  g=3 
1s2p1P L=1  S=0  g=3 
1s2p3P L=1  S=1  g=9 
allowed dipole transition to the 
ground state ∆S=0, ∆L=±1 (0) 
LS coupling for low Z; for high Z – relativistic effects=> jj coupling (less restrictions)  



Autoionization states 
1. excited > 1 electron 
2. excited electron from inner shell  e.g. for Li-like 1s2l2l´ 

Autoionization process Y** → Y+ + e-  
Photon energy for transition Y** → Y* is near to transition Y+* → Y+ in once more 

ionized atom - satellite to resonance line (satellites important for diagnostics) 

Classification of ions according to electron shells 
K-shell – H-like, He-like  usually ≤ 30 states is enough 
L-shell – Li-like to Ne-like   Li-like ≤ 30 states  other ≥ 100 states 
Ne-like – relatively simple and well known – collisionally pumped XUV lasers 
ground state   1s22s22p6 → 1s22s22p53p  collisional excitation  forbidden 

optical transition to ground state 
inversion with state 1s22s22p53s, where dipole transition to ground state is allowed 
 

M-shell – ≥ 103 states  TA – transition arrays (transitions between groups of states) 
    band spectrum – line cannot be resolved in principle 
 
Plasma chemistry – dissociation  vibration states interesting for applications 
  



Atomic processes 
1. Collisional processes 

- if ne is not small, often ion-electron collisions dominate 
- effective collision cross section for process α 

( )Q α    let flux Γ1 flies onto particle 2   1 1n gΓ =  

𝑄𝑄(𝛼𝛼) =
number of events 𝛼𝛼 per 1 s per 1 particle of type 2

𝛤𝛤1
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              … decrease of particle density n2 due to process α 

 
• Collisional excitation (deexcitation) 

 klε ε≥  … electron energy threshold 

– effective cross section has very similar dependence on / klu ε ε=   (for transitions 
of outer e- between levels, where dipole transition is allowed) 
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  Bohr radius (radius of the 1st hydrogen orbital) 

fkl – absorption oscillator strength (characterizes photoexcitation) 
collisional processes are fast between near energy levels 
e.g. between states with the same n (principle quantum number) 

energy splitting of states with different l decreases with n - equilibrium inside 1 split 
level can be ensured by collisions 
collisional transition between states, where dipole transition is not allowed may be as 
fast as for allowed transitions!!! (only the rate cannot be expressed via 0klf ≅ ) 

  



• Collisional ionization (three-body recombination) 

   kλε  for ionization from state k  
(three body recombination → rate ~ nine

2, non-negligible only in dense plasmas) 
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   kξ  number e– in outer shell k 

Dielectronic recombination – collision-radiative process 
** *Y e Y Y hν+ + → → +  

2.  Radiative processes 

Transitions between states 
 bound – bound  → line emission 
 free – bound  → continuous emission with boundary (recombination edge) 
 free – free  → bremsstrahlung 

• Bound – bound (photodeexcitation and photoexcitation) 

  l k klhν ε ε ε= − =   
hp
cν
ν

= Ω




  Ω
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  - unit vector 



( )Iν Ω


  - spectral intensity of emission in unit solid angle    ( )I d dν νΩ Ω


 

- in vacuum for isotropic electromagnetic field           4
cI n hν ν ν
π

= ⋅ ⋅  
Photon absorption – number of absorbed photons by non-moving particles of 

concentration n2 per unit time in unit volume 
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  Qν  effective cross section for absorption  

(for moving particle ν  changes due to Doppler, in rest system ( ),Qν ν Ω
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Photoexcitation   k→l  
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klf  – absorption oscillator strength (0< klf <1) ( /lk k kl lf g f g= −  – emission oscil. strength) 
( )νΦ  – absorption line shape ( ) 1dν νΦ =∫  emission line shape may differ (often same) 

( ) ( ) ( )klI I dν ν νΩ = Ω Φ∫
 
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 if intensity depends on ν  weakly) 

  



Number of photoexcitations/volume/time 
kl kl

k klR n B I=  where ( )kl klI I d= Ω Ω∫


 
 

        Einstein coefficient for absorption 
 

Stimulated emission 
lk kl
stim l lkR n B I=     Blk - Einstein coefficient for stimulated emission 

Spontaneous emission 
lk
spon l lkR n A=   Radiative lifetime   

Equilibrium for black body  =>      relations of Einstein coefficients 
In equilibrium – emission must be equal to absorption 

Black-body radiation   
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(for allowed transitions in XUV region with photon energy εkl ~ 1 keV  is  
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Line shape (very often ( )νΦ  emission = ( )νΦ  absorption) 
1. Natural broadening 
– Consequence of finite radiative lifetime due to spontaneous emission 

lk lkhε γ∆ ≅  state energy width  l lj
j l

Aγ
<

=∑       

Lorentzian line shape   ( )
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2. Pressure broadening (consequence of interactions with neighboring particles) 
In plasmas with prevalence of charged particles actions of electric fields, thus Stark 
broadening (+ splitting) – sources – collisions with electrons and ion microfields 
For neutral particles e.g.. Van der Waals broadening 

 

3. Doppler broadening –due to ion thermal motion  
for Maxwellian distribution function -  line shape     

If Lorentz and Doppler broadening simultaneously – Voigt profile (convolution) 
  



• Bound – free transitions (photoionization and photorecombination)  

photoionization from state k  kh λν ε≥      
photorecombination emission – source    

 for Maxwellian distribution of e– 

coefficient dependent on ion and state gbf (Gaunt factor) 

• Free – free transitions  
bremsstrahlung 

spectrum near to  total power   Gaunt free-free factor) 
 

Ratio of recombination emission and bremsstrahlung           
(for hydrogen atom; k is principle quantum number) 

for collisional absorption of a photon 
cyclotron radiation – in magnetic fields  
emission mainly at the electron cyclotron frequency ωce, and also at its harmonics 

emitted power by an electron     
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Transport of radiation   l - path along a ray   → 
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, e.g. due to macroscopic motion of medium) 
(scattering is omitted for simplicity) 

L – scale length 1k Lν <<   optically thin medium  
1k Lν ≥   optically thick medium 

for k Lν →∞  I Bν ν→    blackbody 

Photoexcitation, photoionization, stimulated emission => radiation IMPACT on 
populations 
 
Laboratory plasmas are mostly optically thin (in some cases with an exception of the 
centers of the most intense emission lines) 
Exception - cyclotron emission at the electron cyclotron frequency ωce from 
magnetically confined plasmas (eg tokamak) is optically thick 
  



Equilibria 
1. TE (full thermodynamic equilibrium) – matter and radiation in equilibrium 

• Radiation = black-body radiation   
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• Equilibrium of excitation states (Boltzmann relation) 
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Partition function Z(T) diverges for kmax=∞, one has to realize that for very high states 

is  and such states need not be bound – these are not states of an 
isolated ion and are influenced by their neighborhood 

Ionization potential lowering ∆I– assumption is often used that states with energy 
k I Iε > −∆   are not bound for   is then   

  



• Equilibrium of ionization states (chemical equilibrium – Saha equation) 
Equilibrium of kth state of neutral atom and ground state of one-time ionized ion 
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the same relation holds between any states of p-times and p+1-times ionized ions 
Similar relations may be written for total populations of ions – here I present for 
neutrals and one-time ionized ions 
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where Zi and Zn are respective partition functions. 

• Electrons (and ions) have Maxwellian distributions with respective temperature 
(T = Te = Ti) 

  



2. LTE (local thermodynamic equilibrium) – matter in equilibrium, radiation not 
There hold - Maxwellian distributions + Boltzmann relations + Saha equations,  

but radiation is not black body radiation (radiation must be in equilibrium at 
least in the part of the spectrum, where radiative processes have substantial 
impact on populations!) 

LTE always holds when the density is so high that collisional processes dominate 
over radiative ones (impact of radiative processes on populations is negligible) 

3. Coronal equilibrium (very rarified plasma) 
It is a stationary state, not an equilibrium 
Rarified plasma  – photodeexcitation >> collisional deexcitation 
     – photorecombination >> 3-body and dielectronic recombination 
Omission of slow processes simplifies calculations of the stationary state 

significantly 

4. Solving of rate equations 
Equations are solved for populations npk (kth state of p-times ionized ion) 
System of ordinary differential equations (stationary state – time derivatives = 0) 
Coupling among different parts of the system only due to radiation transport 
In approximation of an optically thin system – terms including radiation intensity 

are omitted, i.e. impact of absorption and stimulated emission is disregarded 



Principle of detailed balancing 
Differential reaction rate of direct and inverse processes must be equal in equilibrium 

(invariance with respect to time reversal) 
Differential cross section of inverse process can be thus calculated from differential 

cross section of direct process and it can be also used outside equilibrium 
If additionally, Maxwellian electron distribution holds even outside equilibrium, then 

the same method can be applied also for rate coefficients 
In equilibrium, the rate of collisional excitation = rate of collisional deexcitation  

and the rate of collisional ionization = rate of three-body recombination 
Rate coefficients of inverse process can be calculated from rate coefficients of direct 

process and then they can be used outside equilibrium 
Similar application of the principle of detailed balancing are the relations between 

Einstein coefficients 
(calculation of coefficients from detailed balancing is preferential also for numerical 

modeling – preserving of equilibrium solution is guaranteed automatically) 
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