
Recommended reading: Chen 5.7, 6.2-6.4, 6.7, Nicholson chapter. 8        MHD   1 
 

One-fluid approximation (magnetohydrodynamics - MHD) 

MHD describes slow plasma motions– quasineutrality is conserved 
MHD treats plasma like one electrically conducting fluid– equations for mass 
density ρM, velocity 𝑢𝑢�⃗ , electric current 𝚥𝚥, magnetic field 𝐵𝐵�⃗ , and electric field 𝐸𝐸�⃗  
MHD includes mass and charge conservation, momentum conservation, 
generalized Ohm’s law, and Maxwell’s equations 
Mass conservation – electron and ion number conservation multiplied by masses 
and added 
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MHD 2 

If we multiply electron and ion conservation by charges (qe, qi) and added up, we 
get charge conservation (equation for charge density cρ  and current density j



) 

 div 0 (2)c j
t

ρ∂
+ =

∂



 
 

Momentum conservation for electrons and ions may be expressed, as follows 
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Equation for electric current 
To get equation for j



 it is possible to add momentum eqs multiplied ( )/q mα α× , 
but it will be difficult to close equation system without assumption me << Mi . 
Let us start from the assumption of negligible electron mass and let’s require zero 
difference in electron and ion acceleration. While the difference in acceleration 
due to gravitation is zero, ion acceleration by other forces is negligible compared 
to electrons. Thus, we use plasma approximation and the total force acting on 
electrons is set to 0 (must be small)  
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Additionally, we use quasineutrality for slow motions and express electric field 
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Current along magnetic field – electrons dominate  
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From (4) we obtain equation for current 
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to close the equation system, we express ep pα , where 1α =  for 1Z >>   

              and 1
2α =  for 1Z = , e iT T=  

When Maxwell’s equations and the equation of state for pressure are added, one obtains a 
closed system of equations that can be solved 
 
In MHD, equations are usually simplified by additional assumptions: 

the Hall current is usually omitted compared to flow term  j B u B× << ×
 





. 
for low temperatures one omits pressure in the equation for current (pressure leads 
to Biermann battery term – B cannot arise form 0 in MHD without this term) 
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Ideal MHD  ( )0 Eν σ→ ⇒ → ∞  
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Freezing of magnetic field into plasma 
 

plasma moves along flux tubes, flux tube element is l x xδ ′= −
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and velocity u′  in the point x′ is  ( )u u l uδ′ = + ∇


  

,  
then the time derivative of the element            
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The equation for time derivative of B is rearranged using well-known vector identity 

( ) ( )divB B u B u u B
t

∂
= − + ∇ − ∇

∂



  

  

 

When this equation is combined with continuity relation, one obtains 
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The variations of vectors lδ


and /B ρ


are given by the same equation, and thus magnetic 
force lines follow plasma motions, they are “frozen” into plasma.  

For surface S moving together with plasma it holds  
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Hydromagnetic equilibrium 
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 diamagnetic effect 

 
 

B2/2µ0  =  magnetic pressure 
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        ratio of thermal pressure to magnetic pressure  

       (parameter β of a device gives the ratio of maximum 

       thermal pressure to the maximum magnetic pressure) 

Non-ideal MHD – plasma diffusion into magnetic field 
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 τ is the time of plasma penetration into field 

It is the B
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dissipation time – field energy transformation into heat 
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Simultaneous flow and penetration (diffusion) 
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the first term is diffusion; the second term is freezing (field moves together with flow) 

Magnetic Reynolds number    
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Instabilities driven by the pressure gradient 
1. Rayleigh-Taylor instability boundary between fluids, if 

 0p ρ∇ ⋅∇ <  

Dispersion relation of waves 
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for ρ2 < ρ1 waves on the fluid surface 
for 2 1ρ ρ>   1 iω γ=  amplitude grows ⇒ instability 

 

2. Instability of magnetically confined plasma (Kruskal-Schwartzschild) 

B is the lighter fluid, plasma is the heavier fluid 
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Ion drift    
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electron drift may be omitted 

 

 

 

 
Due to ion motion, charge is formed at the rippled surface, it induces electric field, 
and it causes E×B drift of ions and electrons that enhances ripples 
Derivation from 2-fluid description (derivation is also possible from MHD): 

ions – equation of motion 
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v1x is E×B drift (for ions and els), v1y polarization drift (negligible for electrons) 
ion continuity equation 
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electron continuity equation     1 1 0v 0xi n nω− + ∇ = , where we assumed Z=1 and 
quasineutrality ni1 = ne1 after substitution one obtains dispersion relation 

2 2 0
0 0

0

1 1v v
2 4

g nk k
n

ω ⋅∇
= ± +



 

enough long waves grow, if the density gradient goes against the gravitational acceleration 
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