Waves in plasma

linear x nonlinear

Linear waves - small perturbations of a certain state of a system (stationary
homogeneous or slowly varying in time and/or space)

Linear expansion of quantities
a=a,+a,(r,t) b=b,+b,(7,t)
ao, bo may be functions of 7, ¢ in general

> >
The products %1 >4 *b1,00 are omitted (they are small of the 2" order)

In spatially unlimited medium 4, = Iaé exp(ikr') K Eourier expansion
The perturbations evolve independently of each other, it 1s sufficient to study
evolution of periodic perturbations.
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We shall be often interested in eigenmodes, i.e. solutions in the form

= Re{a1 -exp[i(”;’7 _wt)}}

Eigenmodes are one of the characteristics of a system. We shall search for the

dispersion relation @ = (k)

Way of the system description

* Two-fluid hydrodynamics - simple, but in some cases incomplete description of
the system
 Vlasov equation

Classification of waves

 Longitudinal waves x transverse waves

* High-frequency (electron) waves x low-frequency waves

 Plasma without stationary B X plasma in magnetic field (magnetized plasma)
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Plasma waves (Langmuir waves)
(recommended reading — Chen 4.3, 4.4, 7.4 or Nicholson 6.3-6.8,7.3,7.4)

longitudinal waves - velocity % || k

high-frequency (in 1% approximation 7% —> @)
We assume small deviations from homogeneous stationary state
no=ny+m(F.t) G =i+, (F,t)  ny=2n
——

Ol

Continuity equation

0 . -
ey div(n,i,)=0
ot
on : .
0. order 8t0 +div (myid, ) =0 n, = const.

on,
+div| n, uo + U,
1. order o¢ ~

on _
— —+n,divi, =0
Ot

=0 _
j we omit 71U <=2, order
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Electron density variations —> E=0+E, ( )
divﬁzﬁ(ne—Zni) divE, = =dey, n,
&, €9

Equation of motion (momentum conservation)

azjie = > — qe I _ Vpe _ 7 a7
Y +(ueV)ue = " E . Vv, (ue ul.)
Ou - 4.7z Vp
a_tlJer U, = m—eEl—menlO (Vp, =0)

Solution will be assumed 1n the form ei(kf_wo (k 1s real)

a(7,t)= Re(A ei(ﬁ_wt)) = Re(A* ei(Erw*t))

a= %(A e, c.c.)

Capital letters — complex amplitudes
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Cold plasma without collisions (last term on both sides of eq. motion disappear)

on o
—+n,divi, =0

ot
—1wN,+nikU =0
R e 1 0 [
divE, =——n, .
%0 ikE +—N,=0
ou e - €0
1 _
ot m ol : e =
e —za)U”+—EH:O
. T m
u,E || k e
o’n.  e’n e’n w N ~ ie
L+— 2 =0 ) =—2 U=—— E =—N
at2 1 pe [ k [ k
&M, Eym, n, €
Correction when 1ons are taken into account
Ze'n
2 2 2 2 _ 0
W, =0, +0, @,

&g,
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Reactions on high-frequency field E, (it can be internal or external)

= . . ie’n, -
J. =—e| nju; + n, |=——-EF,
—_— mea)

OF
= p | . = . 0/ = -
g, divE = —+divj =0 div—|g,E)=—divJ
0 A 10 Ot J 8t( 0 ) J
R R
frequency @ —i@ div 50E+; =0
divgo[lerE]E:O .
wE, eigenwaves of charge
- 2 2 o
o] M @ } cE=0
' ENRO w’ E#0 = £ =0

and thus dispersion relation @ = @, independent of £ = plasma oscillations
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Impact of collisions
e - 0°n,

ou .
a—tl_I_Vei Uy =——F~,

+V€l '—_I_a)

ot? or T 0

e

2 1%
. V . . —_Cy
_ g 2 Vei 2 Vei . oyt 5 ,
solution ~ e~ W), =1 7 T \/ @, 4 n=n, "e damped oscil.

Impact of pressure (non-zero temperature)

. do -
when 7' =0 Vg, = P =0 put when T # O perturbations propagate
spatial shape of the perturbation is preserved, we choose k=kx = uU=ux
ou, e I 1 o© p adiabatic process, @ > v = collisions are not
P B Iy able to make the distribution function isotropic
o  m, m,n, Or, p
0
&I)lxx
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Unperturbed pressure Py = nok 510 (scalar, T, electron temperature)
Pressure perturbation across wavevector 1s caused only by density perturbation

R, =HA_. =nk,T, (Tu = O)

lyy lzz
In longitudinal direction, the work by pressure must transform into thermal energy

. dn
EnOVOdeYTl__podV_pOVOn_O dn—n, d]TI_)Tl”

dU
2p
= kBT1|| =—2pn =

2
n, 1,

& B =nkgly+nkgly =3k,Tin,

In longitudinal direction, electrons are particles with 1 degree of freedom (y=3)

o’n, 3k,T, 0°n,  e’n
gulz_iEI_3kBT8nl — 21_ B0 21_|_ Oy =0
Ot m, mn, OX Ot m, Ox~ &m,

> > 2.2 2
Plasma wave propagates O =, +3k"v, (VTe = k1, / me)
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Dispersion relation @° = w;, +3k*vy,

2
0, , W,
0 —=\/3VT8 +—

V =
k k*
do kv,
Ve dk \/ 2 2.2
@, +3k"v;
3v?
vV = Te
¢
¢
2 2.2
| G Y P R L2 /7
System with temporal and spatial dispersion “r T 2 2
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Description via Vlasov equation

A A o
81 ar op solution fo(P) E,=0
= 9 .. 9% do _
Perturbations J1 (7> P), E, k=xk EWLV o —ek, a =0
Solution in the form exp(ikx-i ax)
. ek 0, perturbation need not be small for Vx =V, = w/k
S w—kv_Op = resonance electrons
2 € . . e . eE oOf, ..
VE =—— -— | fd kE, = — 1 0 4
nl ojﬁp e &, Ilw—kvx op, P
Ao - )
ike, ( dij =0 @, g(p,)
a) kv %) e =1- —dp.
N Py / a)2 ".(1 B kVX )2
0,

where &(P,)=n, _..ﬁ)(ﬁ)dpydpz
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)
vV, =—>V, . .
When ¢ [ ¢ we use Taylor expansion, resonance electrons are omitted

(for v, > ¢ there are no resonance electrons at all)

W’ kv 3k2v?
grgl—a)—‘z’jg(px)(H . wzxjdpx assumed (Vo) =1, =0

2 2
@, 3k2v: @
_1__pr Te D 2 o2 2.2
Then gr_l e 0> 0’ = @ :a)p+3k Ve

When vy, <c  ? what to do with pole 1n integral — answer must be searched via
solving initial value problem, i.e. perturbation is given in the initial time # and we
follow its evolution

For solving nitial value problem, Laplace transform must be applied

A(w) = Ta(t) e dt

Laplace transform is defined by integral for ® with enough

large positive imaginary part (for a(z) limited, it 1s for Im(w) > 0)

For other m, Laplace transform 1is obtained by analytic continuation of function
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' k
For Im(®) > 0 integration path runs below the pole, when doing analytic
continuation the path has to stay always below pole (go around pole from below !)

£.- T/ 4 &ﬁ

- x 74y &
. % o

-

One knows from residue theorem that integral over half-circle is ixnxresidue
For w/k << c itis

1 m, ] m, P . m, ( mea)j
= — = — —iT—=%0| p, —
@—kv k P — m,@ k m,@ k k

Here P denotes integral in the sense of Cauchy principal value
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2 m, dg
Im e (w,k)=—mw,—=

F it 1 Pk m,m
or wreal 1t 1s k dpx p.= Ii
g N
-4
LN ——
ne fé? fh_ﬁf
< * &
Im(sr) > 0 Im(&) <0

One searches complex w =wr~+i ay so that e(w,k) =0
Weakly damped (slowly growing) waves |ar| << wr
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dRe gr(a)R) —

E(w, +iw,)=Re ¢ (w,))+ilm ¢ (w,)+io, 0
dow,
2
@, 3k*v?
- 1__ P le __
For wr/k >> vre  1tis Re gr(a)R)_l 2 7 =0
w, W
2 2 2.2
and thus Wy = 0, +3k Ve
imaginary part of frequency is
Imé& (w m’w, d
0)1:_ r( R) :7[0)2 e2R g
dRe ¢ .(w,) P ok dp. , M,y
d w, rok
The evolution is exp(-i wrt)exp( wit) - the rate of Landau damping is yL.=-cr

T 0.0, W’
», =— L = exp| —2
. . . ., 1 3.3 2.2
For Maxwell’s distribution it 1s 8 k \2 2k \5
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Energy of plasma wave

= 1 a 1/~ —iwpt * _iwpt
—&,— = = —8—E =—JE E=—\Ee " +FE e™*
E s complex amplitude, R denotes real part, we average over time < >z)—ﬂ
R
~ 1 ~ dlI
ii‘E‘z =——(Re U(Cf)))‘Er ReG(a)):Rea(a)R)—a), e
4 dt 2 R
& d 1z ldlmo| d | xp2 ] dE .
O __—_|E| —— —|E| = —=w,E
4 dt 4 do |, di 2 used gy
1 1O
Conductivity orelated to permittivity & & ='T~ - we —let &, =Re(e,)
0
» eneral expression
;[1 % (s, 28 \E‘ ]:_lRw(wR)E - B—
t|4dow 2

> (plasma wave do (w&&y) = 250)
Wtot = energy den51ty
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Linear X Non-linear Landau damping
in coordinate system connected to the wave 1s ar=0

A —~€ - E
i V E =Esmkx g4 Upz—egoz—%coskx and

electron equation of motion is

m, X = —el'sin kx

electron oscillates in potential well with frequency

eEk

~ 1/2
o, =( - j (bounce frequency)

e

for times ¢ < @, motion is not influenced by field = Landau damping is linear

for 7, =—w, > o, in time ¢ =7/®, electrons start to return energy to wave
trapped electrons % )
inlB pp ge 1 F(v)
| V,—V, <V<V +V,

\_,-/\ mevf/2=2|eg0m|

~

~ \1/2 —_
—t ¢ > E
A 2(6—j

& Wb % mek

1
N




BGK modes (Bernstein, Green, Kruskal)

It follows from inhomogeneous equilibrium — accurate non-linear solution

Stationary Vlasov equation for particle s has solution
2
v i+% 9 g f=1|E—+q,0) |=fU)
" Ox op 2m,

Simplest solution for cold untrapped beams

m GOV, = v, MOV =Ty ()= Wk 2ep(x)/ m,

Continuity equation for e,i and particle motion in potential field (vi similarly)
Charge densities of particle are inserted into Poisson equation

~1/2 ~1/2
¢ eny( v, Ve |_em]fy, 2ep - 2Zeq
d X2 &y \ UV, ()C) \Z ()C) €y mevio Mivi)

Equation 1s similar to that for motion in potential field — potential V(@)

1/2 1/2
d* o 0 n, 2eq M’ 27Zeq
= —— V =—— 1+ + D1 ]—
dxz agp V(¢) where ((0) g, {m A% [ - V2 J 7 M_V2

€ <0



2
ep(x)|l<m v, A |ep(x) <K —
e 20 M - :

For small ¢ 7
2 2
d (0_'_ n.,e 1 N Z 0 =0 P(x) = @, sin (x/ Ay )
2 2 2 -
dx &y m,v ., Ml'V,'() solution ﬂz;éK = a)lzye /Vio—l_ a)gzoz' /Vi20

[
f(ﬁm - periodic potential
electrons see it reversely
fo 4

For any potential, it 1s possible to construct such stationary distribution of ions and
electrons that it creates this given potential

Case-van Kampen modes

One searches for fi for given w, k. Ji = /i exp(ikx —iot) contain & function —
non-physical
There exist combinations CvK modes that do not contain singularities
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High-frequency electrostatic waves in plasma with stationary magnetic
field Bo

k1l B, magnetic field does not influence waves = plasma waves

k LB, additionally to electrostatic forces, electrons are returned back by
magnetic field — cyclotron frequency .

2 2 2 2
when T=0 W =0,+0. =0,  ypper hybrid frequency
upper hybrid waves — plasma waves in direction normal to B,

in warm plasma they propagate due to thermokinetic pressure (similarly as
plasma waves)

additionally there exist linear eigenmodes of Vlasov equation that do not
have hydrodynamic equivalent — Bernstein modes
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Stream instabilities (Two-stream instability)

Many situations — motion electrons against ions, motion of electron groups

A € 2 Simplest situation (mainly for analytic
- >E solution) — 2 1identical electron groups
— ¥, + ¥ against each other — 10ns static ©;=0
o H na0= NBo= No/2, Zn; = no
v ® Aﬂ' & = VTe << Vo Eo=0
on 0 0 E .
=+ (naua)zo Yo +(u, Vu, == dlsz—i(nA+nB—no)
at at me 80
We solve evolution of linear perturbation nq1, ua1, E1 ~ exp(ikx-iwt)
—icon ,, + ik (ngu, /2—vyn, )=0 —iwngy, +ik (nguy, /2+vong )=0
ek ek e
—iou  — kv, =—— —iouy +ikvgy, =—— kE, =——(n, +ny)
me me 80

Amplitudes of velocities are expressed from equations of motion and we
substitute them into continuity equations

PV 20



ek,
m, (a) +kv, )2

. . ikE, =ik ey L v g
Poisson equation 2eym, | (w+ kv, )2 (@ kv, )2 and from here

ek,
m, (o kv, )2 and insert them to

n X n .
Ny :kjo(_l) Mg =k70(—1)

2

1= : + :
we obtain dispersion relation = 2 (@+kv, )2 (0 kv, )2 leading to

4 2.2 2N 2 p2.2(7.2.2 2\ _
" —(2k V0+a)p)a) +k VO(k VO_a)p)_O , character of the

. . e, e 2 2
solution depends on the sign of absolute term, if it is > 0, @ >0, @, >0

: Ry s 2 2 2 .
then system is stable, if kv, < o, ,then @ >0, ®; <0 and root with
positive imaginary frequency exists — solution grows in time — instability

2 2.2
0 kv
2 2.2 p 0
o, =kvi+—L|1+ [1+8 21,2 2, a2

p

and solution @ =iN-®; is growing exp(-iant) = exp (1)
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2.2 2 . .
for K'Vo K @, jtis @, =iy =ilk|v,  search for fastest growing mode (k),—

d(—a)22 ) 0 2y —
in maximum d(k*v?) =
thus fastest growing mode grows only a bit

slower than w,
How the growing modes look like?

Pro small k for growing mode @ =1 |k | Vo
density perturbations of A,B nearly cancel
(upper figure — vo=2) Field £ 1s formed only
by small sum of densities of order ~k*vo*/®,*
growing field exp(ikx+kvot)

Fastest growing mode (lower figure)
One sees nonzero sum of density
perturbations of beams A,B

Here special case of growing static
perturbation (due to problem symmetry)

E.nu

2

E.n.u
(=]




Other case — electron motion against 1ons with velocity v

We introduce x=av@p. a y=kvo/wy
_Zm, I M, N 1
Dispersion relation ) (x—»)

-=F(x,y)

for y> boundary, the dispersion relation has 4 real roots — stable system
for y < boundary, the dispersion relation has only 2 real roots — instability

107 ¢ - — . —
g ¥ = 0.5 [
i “¥=1.5 |
10" | | .
L 5 o ., ]
10" Lo B S P - ST W
10"

PV 23



	Plasma waves (Langmuir waves)

