
PST 1 

Plasma as a mixture of fluids 

(suggested reading – D.R. Nicholson, Introduction to plasma theory, §7.1, 7.2) 

Fluid equations (hydrodynamic two-fluid equations) 
 

particles of type „s“ (s = e-, i+), collisionless plasma 
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   density ns and average velocity sv  
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  continuity equation (conservation of particle number) 
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1st moment   integral 
vdvsm    of Vlasov equation 
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conservation of momentum law  pressure tensor 

 

Pressure is tensor 
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, where ij is viscous pressure – tr(ij) = 0 
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    force equation (Navier-Stokes eq.) 
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Including collisions into equation of motion 

Mutual collisions of particles of the same sort – no impact on sv  

for  t s    v vst s t  … braking by friction against particles t  
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it follows from momentum conservation law that 
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Energy conservation law 

 simplified assumption are often used 

 adiabatic process  p Cn  

 isothermal process  1   

to avoid solving equation for temperature (heat conduction) 

 

Derivation of energy conservation via 2nd moment of Vlasov equation   
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                                        work by pressure  

if div vs s s

ik ik sP p p    work by scalar pressure 

 

One-fluid approximation 

uses mass density , average mass velocity v, temperatures may differ Te, Ti  

in magnetic field – magnetohydrodynamics (will be described later) 

for the description of laser-produced plasmas, quasineutrality approximation is 

applied and one obtains one-fluid two-temperature hydrodynamics  
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Drift motions of fluid 

v B     for any particles with  m, q  
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p  was absent  in 1 particle description  

slow motions  => c   
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assumption  v v 0  - term including velocity square – small for small speeds 
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=>          drift 

     
…diamagnetic drift 
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     diamagnetic current 
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curvature drift - same as in guiding center approx., but grad B  drift is absent !!!  
inhomogeneous E  – drift is different from that in guiding center approximation 
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explanation of 
diamagnetic drift 



PST 8 

v B  
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  – is often omitted    (slow motion and small gradient) 

  

vz B
z

k Tq n
E

t m mn z

 
 

   

If the right side were large for e-   

vz

t




  also large 

 

( )e in Zn

z z

 


     quasineutrality e in Zn  violation 
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slow motion 1e 
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In plasmas – quasineutrality principle 
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 E is calculated from en , and not from Poisson equation 

This is called plasma approximation 
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