Plasma as a mixture of fluids

(suggested reading – D.R. Nicholson, Introduction to plasma theory, §7.1, 7.2)

Fluid equations (hydrodynamic two-fluid equations)

particles of type ,,s" (s = e^- , i^+), collisionless plasma

$$\frac{\partial f_s}{\partial t} + \vec{v} \frac{\partial f_s}{\partial \vec{r}} + \frac{q_s}{m_s} \left(\vec{E} + \vec{v} \times \vec{B}\right) \frac{\partial f_s}{\partial \vec{v}} = 0 \quad \text{Vlasov equation}$$

$$n_s = \int f_s d\vec{v}$$

$$\vec{v}_s = \frac{1}{n_s} \int f_s \vec{v} d\vec{v} \quad \text{density } n_s \text{ and average velocity } \vec{v}_s$$

$$0^{\text{th}} \text{ moment} \quad \text{integral } \int d\vec{v} \quad \text{of Vlasov equation}$$

 $\frac{\partial n_s}{\partial t} + \nabla (n_s \vec{\mathbf{v}}_s) = 0$ continuity equation (conservation of particle number)

1st moment integral
$$m_s \int \vec{v} \, d\vec{v}$$
 of Vlasov equation
 $\vec{\nabla} = \vec{v} - \vec{v}_s$ $\rho_s = m_s n_s$
 $\frac{\partial}{\partial t} (m_s n_s v_{si}) + \frac{\partial}{\partial r_j} (m_s n_s v_{si} v_{sj}) + \frac{\partial}{\partial r_j} (\underline{m_s n_s} \langle V_i V_j \rangle) = n_s F_{si}$
conservation of momentum law pressure tensor $q_s (\vec{E} + \vec{v}_s \times \vec{B})$
Pressure is tensor $P_{ij}^S = p^s \delta_{ij} + \Pi_{ij}^s$, where Π_{ij} is viscous pressure $- tr(\Pi_{ij}) = 0$
 $\frac{\partial \vec{v}_s}{\partial t} + (\vec{v}_s \nabla) \vec{v}_s = -\frac{1}{\rho_s} div \vec{P}^s + \frac{\vec{F}_s}{m_s}$ force equation (Navier-Stokes eq.)

Including collisions into equation of motion

Mutual collisions of particles of the same sort – no impact on \vec{v}_s

for $t \neq s$ $-v_{st}(\vec{v}_s - \vec{v}_t)$... braking by friction against particles t

$$\frac{\partial \vec{\mathbf{v}}_{s}}{\partial t} + \left(\vec{\mathbf{v}}_{s}\nabla\right)\vec{\mathbf{v}}_{s} = -\frac{1}{\rho_{s}}\operatorname{div}\vec{P}^{s} + \frac{\vec{F}_{s}}{m_{s}} - \sum_{t}\nu_{st}\left(\vec{\mathbf{v}}_{s} - \vec{\mathbf{v}}_{t}\right)$$

it follows from momentum conservation law that

$$m_{s} v_{st} \left(\vec{v}_{s} - \vec{v}_{t} \right) + m_{t} v_{ts} \left(\vec{v}_{t} - \vec{v}_{s} \right) = 0$$
$$\Rightarrow v_{ts} = \frac{m_{s}}{m_{t}} v_{st} = \frac{m_{s}}{m_{s} + m_{t}} v_{st}^{*}$$

Energy conservation law

simplified assumption are often used

- adiabatic process $p = Cn^{\gamma}$
- isothermal process $\gamma = 1$

to avoid solving equation for temperature (heat conduction)

Derivation of energy conservation via 2nd moment of Vlasov equation

$$\int \frac{1}{2} m_{s} v^{2} d\vec{v} \qquad \qquad \frac{1}{2} m_{s} \int V^{2} f_{s} d\vec{V} = \frac{3}{2} n_{s} k_{B} T_{s} \qquad (\vec{V} = \vec{v} - \vec{v}_{s})$$

Heat flux

$$\vec{q}_s = \frac{1}{2} m_s \int \vec{\mathbf{V}} \mathbf{V}^2 f_s d\vec{\mathbf{V}}$$

$$\frac{\partial}{\partial t} \left(\frac{3}{2} n_s k_B T_s \right) + \operatorname{div} \left\{ \vec{q}_s + \vec{v}_s \frac{3}{2} n_s k_B T_s \right\} + P_{ik}^s \frac{\partial v_{si}}{\partial r_k} = 0$$
$$\frac{3}{2} n_s k_B \frac{\partial T_s}{\partial t} + \frac{3}{2} n_s k_B (\vec{v}_s \nabla) T_s + \operatorname{div} \vec{q}_s + P_{ik}^s \frac{\partial v_{si}}{\partial r_k} = 0$$

work by pressure work by scalar pressure

 $_{\text{if}} P_{ik}^{s} = \delta_{ik} p^{s} \Longrightarrow p^{s} \operatorname{div} \vec{v}_{s}$

One-fluid approximation

uses mass density ρ , average mass velocity **v**, temperatures may differ $T_{\rm e}$, $T_{\rm i}$ in magnetic field – magnetohydrodynamics (*will be described later*) for the description of laser-produced plasmas, quasineutrality approximation is applied and one obtains one-fluid two-temperature hydrodynamics

Drift motions of fluid

 $\vec{\mathbf{v}} \perp B$ for any particles with m, q $mn \left[\frac{\partial \vec{\mathbf{v}}}{\partial t} + (\vec{\mathbf{v}} \nabla) \vec{\mathbf{v}} \right] = qn \left(\vec{E} + \vec{\mathbf{v}} \times \vec{B} \right) - \nabla p$

 ∇p was absent in 1 particle description

slow motions $\Rightarrow \omega \ll \omega_c$

$$\frac{\partial \vec{\mathbf{v}}}{\partial t} \text{ is omitted, because } \left| \frac{mn \frac{\partial \vec{\mathbf{v}}}{\partial t}}{qn \, \vec{\mathbf{v}} \times \vec{B}} \right| \approx \left| \frac{mn \omega \mathbf{v}_{\perp}}{qn \mathbf{v}_{\perp} B} \right| = \frac{\omega}{\omega_c} << 1$$

assumption $(\vec{v}\nabla)\vec{v} \simeq 0$ - term including velocity square – small for small speeds

 $0 = qn\left(\vec{E} + \vec{v} \times \vec{B}\right) - \nabla p$ $\times \vec{B}$ $\left(\vec{\mathbf{v}}\times\vec{B}\right)\times\vec{B}=\vec{B}\left(\vec{\mathbf{v}}\cdot\vec{B}\right)-\vec{\mathbf{v}}B^{2}=-\vec{\mathbf{v}}_{\perp}B^{2}$ \Rightarrow $\vec{\mathbf{v}}_E = \frac{\vec{E} \times \vec{B}}{D^2}$ $\vec{E} \times \vec{B}$ drift $\vec{v}_D = -\frac{\nabla p \times B}{anB^2}$...diamagnetic drift $\vec{\mathbf{v}}_D \perp \nabla p$ - then $(\vec{\mathbf{v}} \nabla) \vec{\mathbf{v}}$ is often exactly = 0explanation of diamagnetic drift $\vec{j}_D = n_e e \left(\vec{v}_{Di} - \vec{v}_{De} \right) = \frac{B \times \nabla \left(p_i + p_e \right)}{D^2}$ diamagnetic current $n_i = \frac{n_e}{Z}$ $q_i = Ze$ $q_e = -e$ $p_e \approx n_e k_B T_e$ $p_i \approx n_i k_B T_i = \frac{n_e}{Z} k_B T_i$

curvature drift - same as in guiding center approx., but grad B drift is absent !!! inhomogeneous E – drift is different from that in guiding center approximation

$$\vec{\mathbf{v}} \parallel \vec{B}$$

$$\vec{B} = (0,0,B_z) \rightarrow \mathbf{v}_{\parallel} = \mathbf{v}_z$$

$$\mathbf{v}_z \frac{\partial}{\partial z} \mathbf{v}_z - \text{is often omitted} \qquad \text{(slow motion and small gradient)}$$

$$\frac{\partial \mathbf{v}_z}{\partial t} = \frac{q}{m} E_z - \frac{\gamma k_B T}{mn} \frac{\partial n}{\partial z}$$

If the right side were large for e $\rightarrow \frac{\partial \mathbf{v}_z}{\partial t}$ also large

 $\frac{\partial n_e}{\partial z} \neq \frac{\partial (Zn_i)}{\partial z} \rightarrow \text{quasineutrality } n_e \simeq Zn_i \text{ violation}$

$$=> -eE_{z} = \frac{\gamma_{e}k_{B}T_{e}}{n_{e}}\frac{\partial n_{e}}{\partial z} \equiv e\frac{\partial \Phi}{\partial z}$$

slow motion $\gamma_e = 1$

$$= e\Phi = k_B T_e \ln n_e + C = n_e = n_0 \exp\left(\frac{e\Phi}{k_B}T_e\right)$$

In plasmas – quasineutrality principle

$$n_e = Z n_i \qquad \qquad \land \qquad \vec{E} \neq 0$$

$$\vec{E} = -\frac{k_B T_e}{e n_e} \frac{\partial n_e}{\partial z} \qquad \vec{E} \text{ is calculated from } \nabla n_e \text{ , and not from Poisson equation}$$

This is called **plasma approximation**