Methods of plasma description

Charged particle motion in external electromagnetic (elmg) fields
Charged particle motion in self-consistent elmg fields
Kinetic equations
Fluid (hydrodynamic) equations - 2 fluids
- 1 fluid
- magnetohydrodynamics

Particle motion in external fields
(suggested reading— D.R. Nicholson, chap. 2, Chen — chap. 2, 8.4)

A) Homogeneous fields
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DIAMAGNETIC MEDIUM - u~1/B =not classical magnetics (it has 1~B)
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v, -station. E+vxB=0 gc=gyration center Vi« = g2 - V& drift in E field
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here qg>0, VE=Ocr. VE<®crL VE> ®cry potential energy - 1 max, 3 min
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when v(t=0) = 0, then vg = @, = v, (cycloid), otherwise trochoid, often case v, =~ vr > vg

general force e.g. gravity force
. 1FxB . mgxhB
Vi g B Ve g B gravity drift
= § X E
different direction for electrons and ions /=M +m) B gravity current
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B) Inhomogeneous B

Fo— mv, s mv, 7
g p R K (centrifugal force)
Rk k k
. FyxB _mv) R xB
curvature drift g B g R’B’
divB=0 rot B=0 curved field cannot be constant
D B =B =B +A oB

linear approximation of field during the particle motion on the Larmor circle

F,=-qv B.(y)=—qv, (cos a)ct){BO t 7, (cos a)ct)(;—B}
V
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Invariance of (s...trajectory along the line of force)
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Where is particle with Vo from B, area reflected?
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Bov v, B, R,

m m

where R, 1s mirror ratio, it defines loss cone — for ¢ <6, particle 1s not trapped

Adiabatic invariant — quantity that 1s conserved during slow spatial and temporal
variations of the system

Classical mechanics — during periodic motion, action J = Cﬁpa’q 1s conserved.
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Gyration motion  p=mv,; g=x

7o mv,’  2mrx
J = Cﬁmvxdx = j mv,*sin’ (w,t)dt = = = U => [ =const.
@, q
0 c

When is the adiabatic invariant 4 not conserved?
a) cyclotron heating

o~ 0, B,E oscillates = @ << @, does not hold = £ # const.
b) magnetic pumping
B varies sinusoidally in time, the invariance of 4 1s broken during particle
collisions with moving magnetic mirror
If compression (field increase) occurs during B=0

CUSP
/—anon

collision, then partly Vi =V
. . . ORDINARY
— in expansion Yy is unchanged MIRROR ~\

AXIS OF
SYMMETRY

¢) magnetic cusp inthe middle B=0—->a@, =0
= H #const.



Second adiabatic invariant
a, b ...turnabout points

b
A S = 2[ Vs longitudinal invariant

Third adiabatic invariant

Vygs Vi L B, Ry - drift in direction of angle ¢

V, J;=Pv,dl - 3. adiabatic invariant
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C) Inhomogeneous £

E =xcosky E, B =3%B
dv
m——q(E(y)+V><B) y=y,tr cosam.t
dt
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Polarization drift (temporally varying £)

E 1B — =0 B=B: E(t)=-Etp
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mv = gE + gV x B
V=V, +V X+V P assumption Y, = const.
p
m(\'f0+\'/E) = —qEf+qV,xB—qv, B+ qv ,Byx
MV, =qVox B cyclotron rotation

mv, =qv,Bx V, = polarization drift

O:_qutj}_quEBO.j} Vp — ExB drift
. Et . EXEO , E mE 1 m -
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qB," dt Z )B dt B dt

polarization current
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PONDEROMOTIVE FORCE

= low frequency force acting on charged particles in inhomogeneous high
frequency electromagnetic field

Oscillation energy of charged particles in high frequency field is given by the
particle position — so it is some kind of potential energy U and there 1s force

I"==V U that expels charged particles from the area of strong field.

Ponderomotive force acts on any dielectric if its dielectric constant depends on
density (electrostriction)!!

Ponderomotive force consists of 2 parts — force caused by particle oscillation in
inhomogeneous electric field and force due to magnetic field action on oscillating
particle

First, we derive it force caused by particle oscillation in inhomogeneous electric

field E of frequency w:
E= E’O(F) COS wt

N
I
T
N
I
S
_|_
—x

mi = qF = qEO(F) cos wt
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We linearize field variations in oscillation area 1 and equations of motion are

m(ii, +7) = Q[Eo +(77{V)E0]cosa)t

. _ E ~ _ . . _

mr, = qE, coswt -1, = — 1 Scoswt =iy = i(lq COS a)tV)EO =— q2 > (EOV)EO

ma m 2m @

2
— q — —

. F.=— EVI|E
So low frequency force is ~ 21 > ( OV) 0
High frequency magnetic field acts on oscillating particle
- . . 1 . . S
B = B,(r)sin wt B, =——curl E, V=LE0 sin wt

1 m @

The force is then given by the following expression
2 2
L g EO xrot EO

F,=gVxB= 1 E,x B,sin® ot = ——
mao 2mo

2
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The total ponderomotive force is then given by the sum of the forces
_ _ _ 1 2 _ _ _ _ 1 2 1 2
Fy=Fy+Fy=———1_(EV)E,+Excul E, | = -1 VE =——L_V|E ]

2
P 2 mw’ 4 mw* 4 mw

We have used a real amplitude during the derivation, however, the field may be
phase shifted in general, thus, the general expression includes absolute value of
the field amplitude.

Low frequency force acting on the particle thus reads, as follows

2

= 9 2 .

F, = A’ V|EO| F,==VW,. force equal to -gradient of potential energy
1 = 1 ¢E/ 1 q°

W o=—mv’ =—ml —0_cos’ wf =— 1 ~E,’
2 2 mo 4mow

There exists also high frequency force of frequency 2 ax.
For field containing 2 frequencies there 3 forces with sum and difference of w.
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