:'.' . I P P INSTITUTE OF PLASMA PHYSICS
Y OF THE CZECH ACADEMY OF SCIENCES

Differentiable Numerical Sir
(Differentiable Phy

J. Seidl

22.9.2028

IIIIIIIIIIIIIIIIIIII
OOOOOOOOOOOOOO

[)
o | P P % COMPASS
. INSTITUTE OF PLASMA PHYSICS ASCR

Partial differential equations (PDEs)

1st era - analytical theory and analytical solutions (mid 18th century)
o partial differential equations (PDEs) become core of the physics
o focused on describing world by PDEs, on analytical theory and analytical solutions of PDEs

O 1746/7 - d’Alembert’s solution to 1D wave equation followed by many others
O many solution methods: Fourier, Laplace transforms, Sturm-Liouville theory, Green's functions, ...

O most focus on linear operators (tfractable)

2nd era - computational approximations (mid 20th century)
o finite difference, finite element, spectral techniques, ...
O rise of high-performance computing (HPC)
O but solutions to systems often still very demanding

I

3rd era - machine learning and optimization methods - starting now!

o2 2
o: |PP % COMPASS
.. [] AN INSTITUTE OF PLASMA PHYSICS ASCR

Examples of emerging techniques

e building surrogate models
O replace classical simulation or experiment that transforms f: Inputs — OUrput
with a fast surrogate model f': InpuTS — OUTpuTS
® solving inverse problems

utputs — 'nputs

O solve PDE with known data given elsewhere than at initial or boundary conditions, i.e. f': O
O e.g. Physics InNformed Neural Networks (PINNs) or differentiable physics

e improving fraditional numerical methods today we'll very briefly
O interms of speed and/or accuracy touch these parts

® coarse-grained simulations
O fast/inaccurate coarse-grained simulation + correction by a model or real data

e learning (simplified) governing equations from data or complex simulations
O e.g.SINDy, PDE-FIND

o finding suitable coordinate systems for non-linear PDEs and reduced representations

® non-linear operator learning

for references see e.g. reviews: [1] https://physicsbaseddeeplearning.org [2] Brunton, Kutz (2023), [3] Ramsundar (2021)

https://physicsbaseddeeplearning.org
https://arxiv.org/pdf/2303.17078.pdf
https://arxiv.org/abs/2109.07573

[)
o | P P % COMPASS
. INSTITUTE OF PLASMA PHYSICS ASCR

Today’s topics
- Python for scientific computing and data science
- Speed up your simulations with
- Automatic differentiation of computations
- What are (NN)
- Differentiable physics - solving inverse problems
- Implicit representation of functions with NN
- Physics Informed Neural Networks - solving PDEs using NN

Naviers-Stokes loss

Experimental data loss

IV -Vllt=0

20/02/2023 4

% COMPASS

\ INSTITUTE OF PLASMA PHYSICS ASCR

Choosing programming language

Typical problem of scientific computing: solving (a system of) partial differential equations such as

V-u=0

o 5 _ + some data “fixing” the solution
Pp; = —Vp+ uVu+ pF

Steps:
® decide on the methods that will be used to solve the problem

® decide

Most of the high-performance codes in the fusion community are written in C/C++/Fortran, but is it still the best way?

C/C++/Fortran/... high-level languages (e.g. Python)

- :(complex, steep learning curve, slow to develop
- :(not suitable for hard real time

[)
o | P P % COMPASS
. INSTITUTE OF PLASMA PHYSICS ASCR

Cost of a simulation

= limifs code usability, manpower costs,
(1) (2) (3) introduces mistakes & wrong results

simulation cost = COSTdevelopmen’r + COSTrun performance + COSTusoge

complexity
often: performance cost < development & usability cost

C/C++/Fortran/... high-level languages (Python)

- complex, steep learning curve, slow to develop

i}

we need this (2) ...

- :(not suitable for real fime H

...and this (1), (3) at
the same time

while it's not easy to simplify the low-level languages, the performance gap is gradually being closed by dedicated python libraries and
like Julia or Mojo that are specifically designed for high-performance computations

https://julialang.org/
https://www.modular.com/mojo

[)
o | P P % COMPASS
. \ INSTITUTE OF PLASMA PHYSICS ASCR

Python techniques to speed-up the code

~
® vectorization (numpy, scipy, ...)

® optimized algorithms and data structures (scipy, pandas, xarray, NetworkX, JAX, ...)
still high-level programming

-+
e parallelization (Dask, JAX, ...) large ecosystem - no need fo DIY

(faster, safer)
® hardware acceleration with GPU/TPU (JAX, PyTorch, CuPy, ...)

® just-in-time (JIT) compilation (humba, JAX, ...)

e distributed computations (Dask, JAX, Apache Spark, ...)

J
® use Cython, Julia, Mojo, ... different high-level language

e write C/Fortran extension or use existing C/Fortran code under the hood use low-level language when you need it,
do the rest at high-level

Thanks to all this, Python is a language #1 for data science (incl. machine learning and Al
and its significance in technical computations steadily grows

[)
o | P P % COMPASS
. \ INSTITUTE OF PLASMA PHYSICS ASCR

Python techniques to speed-up the code

N
® vectorization (numpy, scipy, ...)

® optimized algorithms and data structures (scipy, pandas, xarray, NetworkX, JAX, ...)
still high-level programming

>+

e parallelization (Dask, JAX, ...) large ecosystem - no need fo DIY

(faster, safer)

e distributed computations (Dask, JAX, Apache Spark, ...)

/
® use Cython, Julia, Mojo, ... different high-level language
e write C/Fortran extension or use existing C/Fortran code under the hood use low-level language when you need it,

do the rest at high-level

Thanks to all this, Python is a language #1 for data science (incl. machine learning and Al
and its significance in technical computations steadily grows

Y | P P % COMPASS

INSTITUTE OF PLASMA PHYSICS ASCR

Just-in-time compilation

® C/C++/Fortran are compiled languages [C"de H complle]_H[[ol]
- explicit compilation step to machine code run ahead of execution
- compilation to machine code includes optimizations that boost performance in general + for a specific hardware target
- — optimization ahead of fime often possible

code |r1terpret |n’ferpret L
line 1 line 2

- code (converted to bytecode) executed by python interpreter at runtime using Python Virtual Machine; line by line - slow
- — optimizations often not possible

f(int, int) f(int, int) f(int, int) f(int, float) f(int, float)

e Just-in-time (JIT) compilation - a golden middle way [Code H compile H run H run H compile run

- used by interpreted languages
- block of code (e.g. function) is compiled to machine code at runtime at the time of first use

- run-time overhead during the first execution of the code (x caching), but then performance on par with compiled languages
- the input types and data shapes are known at runtime — performance optimization possible

[)
o | P P % COMPASS
. INSTITUTE OF PLASMA PHYSICS ASCR

JIT in PY'I'hon (an example)

JAX

e developed by Google

e numpy-like interface + re-implementation of many numerical algorithms from scipy
e growing ecosystem of numerical and ML libraries

e based on TensorFlow's XLA (Accelerated Linear Algebra) compiler

e hardware acceleration (GPU/TPU) out of the box

° capabilities
e JAX has some specifics (e.g. specific freatment of conditions and loops), but in general as simple as:
numpy optimize and run # JAX
at GPU/TPU (if import jax
available)
> @jax.jit
def central difference(f): def central difference (f):
return (£[2:, :1 - f[:-2, :1) / 2 return (£[2:, :]1 - f[:-2, :1) / 2

% COMPASS

INSTITUTE OF PLASMA PHYSICS ASCR

_.-- would 32-bit precision be sufficient for your application?

operator: (dffdx)i,j= (fi+1,j— fi-1,j)/2 .-

backend JIT can be comparable to C++ code
10° —— numpy
- JAX GPU
w ——=IAXCCRY
1
107 et omp
2 bits
¢ 102 64 GPUs can easily run out of memory for large arrays &
. i)
s 102
£
G o 100x speed-up w/ GPU at the cost of a single line of code! €
10>
iy current WIP project at IPP (J. Seidl, P. Macha):
1072 0 - porting fluid plasma turbulence models to GPU w/ JAX
7100 10t 10 10° 104 OSSO PSSO TUPPO ST PPPRO
N; array size = N x N
inefficient number of OMP threads in C++
GPU r/noy have overhead = pays-off only for larger arrays Note: this is a simple example, different problems may scale somewhat differently

INSTITUTE OF PLASMA PHYSICS ASCR

. | P P % COMPASS

Automatic differentiation (AD)

AD is a technique for computing function derivatives efficiently and accurately (no discretization) by applying

the chain rule: 3(9 © f)/aX | X — 89 / of | £(x] * of / oX | « (or its generalisation for multivariate functions)

AD works on functions that are (arbitrarily deep) composition of functions with known derivatives, e.g.:

sin(x,) + x, * X,

AD represents function as a call-graph of
. elementary functions whose derivatives
W, /OX, = AW, + W,)/0x, = OW,[Ox_+ OW,/ox, " . (Jacobians) are analyfically known

af/axk = 8w5 /X,

Y | P P % COMPASS

INSTITUTE OF PLASMA PHYSICS ASCR

AD modes
y = h(g(f(x)))

a=f(x), b=ga), y=h(b) =

equation images taken from stackexchange

multiplication of Jacobians

Oy _ Oh(b) 9g(a) 9f(x)

o0x Ob da Ox

Jacobian matrix sizes: |y|x|x| ly|x|b| |b|x|al |a|x|x|

forward mode

2y _ 2hb) (29te) 21tx)
0x 0b da 0Ox

- # multiplications: |x|-|a|- |b]| + |x|-|b]|-]Y]
- forward mode better when |y| > | x|

- single forward pass evaluating function values & gradients

- Ext sensitivity analysis of a simulation
- few simulation input parameters, many outputs on large grid

reverse mode

oy _ (240) o)) o1t
0x 0b Oa 0x

- # multiplications: |y |-|al|-|b]| + |y|-|b]|-|X]
- backward mode better when | x| > |y|

- 2 passes: forward (function values) & backward (gradients)
= memory intensive

Ex: optimization; neural networks
- many features on input (e.g. image pixels; x > 1) and only scalar
loss (y=1) at output

https://math.stackexchange.com/questions/2195377/reverse-mode-differentiation-vs-forward-mode-differentiation-where-are-the-be

Avutomatic differentiation in SOLPS ITER

e SOLPS = workhorse of tokamak edge transport modelling
- complicated long-running code (days-weeks)
- lots of free input parameters
- radial fransport described by diffusion coefficients (free par.)

9.17E20

[| 6.80E20

I 4.89E20

o 3.55E20

1.74E20

1.15E20

e AD: optimization of diffusion coefficients

1.03E20

to match exp. profiles or simplified turbulent model
[Car“ !2022 l] om0 oot Sl 880 a0 00 7071:3‘0“ Holeo ‘ olvo‘ olao) 0'90" “100
loss L: weighted MSE of discrepancy from exp data fit fo exp n, profile af midplane
el exp.data
_— SOLPS
= 25 N SOLPS uncertainty
: \V
-
4[3000 SOLPS-ITER steps dL/eD a = Q,
150 '\"0‘
let the simulation converge model-exp AD through update value ‘ . ‘ ‘
discreponcy SOLPS-ITER of D 0705 0.71 0.715 0.72 0.725
r(m)

https://onlinelibrary.wiley.com/doi/abs/10.1002/ctpp.202100184

Differentiable Numerical Simulations
(Differentiable Physics)

differentiable physics: differentiable phys. models and methods that can compute gradients of outputs wrt inputs and parameters

INSTITUTE OF PLASMA PHYSICS ASCR

. | P P % COMPASS

Neural networks (NN)

Feedforward (FF) Neural Network: y=o(W.-o (W . -o,(..-0(W, x+b,)..)))

X ... input feature vector
y ... network output —_— o
W. ... weight matrix (learnable parameters!) - Layer
o.... honlinear activation function
- e.g. RelLU(x) = (xif x>0 else 0)
tanh(x)

Output
" layer
o wi@), ,

g —— o(w(z)o(w(1)x+ b(1))+b(2))

o

Universal approximation theorem:
any continuous function can be approximated arbitrarily well by a neural network with at least 1 hidden layer and finite number of weights

Automatic differentiation can be used to compute dy/ow. and dy/ox

‘o: |PP C:comeass

Gradient Descent

Feedforward (FF) Neural Network f, (x, W): y=o(W.-o (W, ,-o,(.. 0(W,-x).))

Data {(x,, y,)} : values of an unknown function f(x) sampled at points x,

Task: Find values of the weights W, such that f_ (x; W) will represent the unknown function f(x
—— value of a scalar loss function L(f,, (x,; W), y,) is minimal

Method: (Stochastic) Gradient Descent
1. Evaluatey, =f(x) at some or all x,

2. Computedl /o W; using reverse mode of AD (backpropagation)

3. Update values of W; in the direction of best improvement
W = W, - learning_rate - dL / o W,

4. Repeat until Lis sufficiently small or stops decreasing

[)
o | P P % COMPASS
. INSTITUTE OF PLASMA PHYSICS ASCR

Convolutional NN (CNN)

Replace matrix multiplication in FF NN by discrete convolution (applied on n-dimensional dataq)

application y=o(k*o (k,*o (..*0(k *x)..)))

Source pixel
variant of NN suitable for gridded data with correlated neighbors
- images, simulation grids, ...

convolution easily parallelizable = fast at GPU

kernel I<i w/
learnable
weights

new value

Example 1 - method for solving Poisson equation

AP =

Poisson equation is a key equation in most high-temperature plasma turbulence simulations.

[)
o | P P % COMPASS
. INSTITUTE OF PLASMA PHYSICS ASCR

Poisson equation - classical approach

82/8y2
. . T
Poisson equation: A = @ Laplace stencil: [1]-4]1] e¥0¢
known 1
classical approach:
[4 =t 100 0 s =T B0 s 0] oy))
14 10 0 .10 0 .. O or use iterative solver:
0 =t @d =1 10 0 o =L O 0 .. 0 ,,_(p]3
. 0 P;
invert D= | b o " dl :
0 -1 1 A4 = eef
0 0 —1 1 4 -1 g $””'T | CGep(D, @, ‘poii)>--- | CGp(D, @ ‘pkii)>
L0 0 0 " e, guess or
all zeros
and ¢ =D'w

direct inversion typically done for small D, iterative methods for large D
- LU decomposition, Cholesky decomposition, conjugate gradient (CG), ...

o2® D
Y |PP % COMPASS
' . . INSTITUTE OF PLASMA PHYSICS ASCR

Poisson equation as an optimization problem

82/8y2
Poisson equation: AQ = Laplace stencil: [1]a]1] e¥ec
1
Reformulate as an optimization problem (in this form inefficient!)
1. randomly initialize solution ¢
2. apply on @ 1£ﬁ =
— find w to which the current ¢ corresponds fﬁ&/ 105
git oL
/)/ kernel =
¢ A stencil
compute L= Zij(@,ij) O‘)ij)2 + QY5 - Pyl

compute gradients oL/,

o O kW

go to (2) and repeat

\ | S

\ A\=\=\=

©

\| NS

kernel =

A stencil w’

optimize the values of @', e.g by gradient descent, to find ¢, that will minimize L: ¢'; — ¢'; - learning_rate -8L/8cp’ij

Y | P P % COMPASS

\ INSTITUTE OF PLASMA PHYSICS ASCR

Poisson equation as an optimization problem

32 / ay2

1
Poisson equation: AQ = Laplace stencil: [1]a]1] e¥ec
1

Reformulate as an optimization problem (in this form inefficient!)

a)
- G o -
l loss Jloss : Zij(oo] OD”.) a ZBC(Cp BC (ch)
reconstruction boundary/initial
Sp..
k Py j conditions on ¢

Y | P P % COMPASS

\ INSTITUTE OF PLASMA PHYSICS ASCR

Poisson equation - CNN model of D"’

Poisson equation: Ap = @

Find a CNN model of D';

- N
fCNN : e
- /

Laplace stencil:

82/8y2

[1]-4

1 I 9%/0x?

1

convo

lution w/

Laplace stencil

_—

supervised
(p,kl = (pknown,kl

[Fufoia) >
2 ;

~

COV

|

i
residual
R=0

/

———> now optimization of parameters © of the model f_, using backpropagation (AD)

o: |PP

% COMPASS

'YSICS ASCR

Poisson equation - CNN model of D! + iterative solver

Poisson equation: Ap = @

Initialize classical solver with CNN model of D!

1. ftrain
- N
fenn ;0
N _J

2.use ¢’ as an

Note: f_,, can be trained separately or fogether with the attached solver

(see prev. slide)

/

66

!
i

q)kl

(o] +)

supervised l re3|duol

E

computing @ =D
- good initial guess speeds up convergence of the solver

———

@®
o | P P % COMPASS
. INSTITUTE OF PLASMA PHYSICS ASCR

Poisson equation - model of D! + iterative solver

Poisson equation: Ap = @

Initialize classical solver with CNN model of D!

Ap=Vp; fn— CGsolver

Zero w/o o
PHY
10721 |\ —— SUP e
e SOLs variants

Residuum Max
3
§

__

10—64

0 25 5 75 100 125 150 175 200 T :
CG lterations . why to use the method: performance increase |

[https://github.com/tum-pbs/CG-Solver-in-the-Loop]

https://github.com/tum-pbs/CG-Solver-in-the-Loop

[)
o | P P % COMPASS
. \ INSTITUTE OF PLASMA PHYSICS ASCR

Poisson equation - CNN model of D"’

Example f,, architecture for Ap = Vu in 3D:

[Tompson 2017]

fine-scales

3x3x3 Conv

ReLU

3x3x3 Conv 3x3x3 Conv
velocity divergence ReLU = ReLU
— L)

Pooling

8x32%

U-net architecture allows long-distance interactions

L EJLE

|

8x32°

ReLU

p-

1x1x1 Conv

1x1x1 Conv

p-

- ReLU

y-
L

—p

b -

I
-

8x128*

p==== Upscaling
mid-scales

8x128* 1x128°

pressure

http://proceedings.mlr.press/v70/tompson17a/tompson17a.pdf

.. [J),
SO ~ COMPASS
[) [) N INSTITUTE OF PLASMA PHYSICS ASCR

|::> differentiable operator - PDE residual |::> neural network

o [) i
Graphical representation (= e 1] o
quantity
1. classical iterative solver: \ / ?p- direct optimization: \
ij
(poi P Roond @y) w’ij
. | CGmp(D’ @ (poii)>.. | CG@(D’ @ (Pkii)> l supervised l rReil%Ud
Py = Pyowni

I

K / 5, ORI /

/3. NN model of D' \

~

Y4

4. hybrid method - NN model of D! + iterative optimizer
4 D! 'y Wy D O O} 'ij
supervised residual supervised residual
l Py = Prnowni R=0 P, = l R=0
= : RS e e

Example 2 - method for solving Poisson equation

AP =

Poisson equation is a key equation in most high-temperature plasma turbulence simulations.

[)
o | P P % COMPASS
. INSTITUTE OF PLASMA PHYSICS ASCR

Implicit representation of data by NN

® NNs are typically used as models of data transforming functions
e Dbut NN can be used also as a model of the data itselves / data generating func ()

o implicit = representation of data structure and relations is hidden in the parameters of the NN

known data

o (check e.g. this notebook or [sitzman 2020])

random initialization 50 epochs 500 epochs

|
I
I
|
i
image color

tial
spane at point (x, y)

\coordinofes

fitting NN
weights to
represent
the data

SRS S S S —————_

O PINN: similar principle, but the NN output is also constrained by the PDE

https://colab.research.google.com/github/vsitzmann/siren/blob/master/explore_siren.ipynb
https://www.vincentsitzmann.com/siren/

‘o: |PP C:comeass

Poisson equation - Physics Informed Neural Network (PINN)

. . f \
Poisson equation: A = & x o Fam \
residual

supervised (BC, IC, .
Find a NN for ¢ that solves the Poisson equation: ®= <Pk own

. . . : 86 a(anf/axm)/ae
similar to fitting the image (known values of ¢ at BC), but now adding K

constraints on the output, given by PDE

now exact derivatives mesh-free = anywhere

Loss = residual of PDE + a - distance from data

Q: think what happens when the data are
not consistent with the PDE and what is the

role of factor @

: mesh-free C"f solution with exact derivatives to single w at a time; simple use, but often slow/poor convergence ; [Raissi 2019]

https://www.sciencedirect.com/science/article/pii/S0021999118307125

Example 3 - method for solving time-dependent problem

INSTITUTE OF PLASMA PHYSICS ASCR

. | P P % COMPASS

[Raissi (2019)]
this is a forward problem, but the known points

Time _ d ependeni P D E _ PI N N co; be anywhere (inverse problem)

u(t,)

. ’ X Data (100 points) 0.75
& — 0.50
4 0.25
] . - = 8 0. 0.00
Burgers equation: u, +uu, - pu, =0 | - 000
D g —0.50
—0.75
. 0.0 0.2 0.4 0.6 0.8
Full PDE solution implicitly represented by a differentiable NN "
t=0.25 t = 0.50 t=0.75
- T 1 1 1
optimization|
| ® ® ®
ey 0 1 e 04 ey 0 -
| <) b7 =]
I
| —11 T T T —14 T T T —14 T T T
| -1 0 1 =5 0 1 2 0 1
| 4 T
| m— Fxact == = Prediction
I
~—— handles shocks out of the box

__

with a good library, basically all you need to do is just to define the PDE to solve:

def loss(x, u, params):

pde = diff(u, ‘t’) + u * diff(u, ‘x’) - params['beta'] * diff(u, (‘x’, ‘x’)) combining or extending PDEs is simple

4

return pde(x) ** 2

https://www.sciencedirect.com/science/article/pii/S0021999118307125

[)
o | P P % COMPASS
. INSTITUTE OF PLASMA PHYSICS ASCR

[Raissi (2019)]
Time-dependent PDE - PINN
Burgers equation: u, +uu, - pu, =0 identification of parameter 5 from data
Assume the data are measured at different times — looking for value of > that is consistent with the data %TL%%?TO that fix
u(:z:
3 X Data (100 points) 0.75
; - 0.50
3 0.25
8 % - 0.00
2 —0.25

—0.50
—0.75

0.0 0.2 0.4 0.6 0.8
t

just tfreat b as an optimized parameter, i.e.
compute dL/ap and optimize jointly with 6

https://www.sciencedirect.com/science/article/pii/S0021999118307125

Example 4 - method for solving time-dependent problem

[Raissi (2019)]

Time-dependent PDE - standard numerical schemes

PDE: u(t, x) = N[u(t, X); 8,,,]

Standard forward solve: iterative application of an operator P that moves the solution in time u(t, x) — u(t + dt, x)

u(tf, x) = POPOPOPOPOP....OP(UO(X); ©.pe)

E.g.: Euler scheme: P:u(t, x; ©,,,) — u(t+dt, x; 8,,.) = u(t, x; ©,,.) + df - N[u(f, x); ©

PDE PDE

With AD, the to (back) propagate gradients through temporal evolution

o I(u(t)) - U .l))2/6 u(t,) allows finding solution u(t,) in any fime t,

data

e J(uft)- 2/8 8, Cllows identification of the value of unknown PDE parameters 8, from the measured data

dofo())

https://www.sciencedirect.com/science/article/pii/S0021999118307125

‘o: |PP C:comeass

[Raissi (2019)]

Time-dependent PDE - inverse problem

Burgers equation: u, +uu, - pu, =0

Task: from known data at arbitrary time u (t,, X) infer initial conditions in time f, that generated them:

known

random — u, /]
l supervised

N
: L=2(u, Uknown) , U'(t), = ulf)
k 8u, /

Uy — U, - Ir - oL /auO

u'(t) \

Note: the larger the |1, -1,|, the harder the optimization (vanishing gradients)

https://www.sciencedirect.com/science/article/pii/S0021999118307125

Y | P P % COMPASS

\ INSTITUTE OF PLASMA PHYSICS ASCR

[Raissi (2019)]

Time-dependent PDE - mesh free

Burgers equation: u, +uu, - pu, =0 generate u, by mesh-free NN

Task: from known data u (t,, X) infer initial conditions in time f, that generated them:

known

e (-
: B _ u'(t), = ult)
L= Z(UT Ukl’lown)2 k 0 + /

—5 —5 Bt {3y
: o 0 0

/ evalat Yo u'(t)
l supervised

Note: the larger the |1, -1,|, the harder the optimization (vanishing gradients)

https://www.sciencedirect.com/science/article/pii/S0021999118307125

‘o: |PP C:comeass

[Raissi (2019)]

Time-dependent PDE

Burgers equation: u, +uu, - pu, =0 find dependence of u, on

Task: from known data u (t,, X) infer initial conditions in time f, that generated them for any plausible value of B:

known
FaHdeI‘H —t 3
| g ?
/ eval at Yo v'(t) \
: .) : mesh
- while L large: guo(x) - | P((0), B) >| P(u(t-dt), B) :>
e s
It — e

L=Y(UU,) _ 66 w7 Y.

—u—»-u—m—awau
: 6—»9 Ir- oL /06

Note: the larger the |1, - 1, | the harder the optimization (vanishing gradients)

https://www.sciencedirect.com/science/article/pii/S0021999118307125

[]
P | P P % COMPASS
. INSTITUTE OF PLASMA PHYSICS ASCR

Hybrid forward solver

PDE: u(t, x) = N[u(t, x); €] alternate time shift operator and solution correction by NN

Task: improve accuracy of a standard integration scheme

u’(dl) u(dt) U’ (2d) u(2dt) u(k-dt) \

- oo oo e >
l loss
kse, (5u,) 9138, 9fldu 9138, 9fldu 9138, 9fldu /

e Each time step is predicted by classical method and corrected (e.g. conservation laws) by NN

il

g
1

e Since NN acts as a correction of u’, often befter: u =u’ +f (u', ©) [TTTTTTTTTTTTTTToTTTToTmmmmosommoomoooooeoees S !
e fisasingle NN receiving feedback from multiple time steps . why to use the method: improved precision

o2® D
Y |PP % COMPASS
' . . INSTITUTE OF PLASMA PHYSICS ASCR

Coarse-grained simulations

o f COIrection step can learn to implicitly up-sample the solution
= the main simulation can run spatially or temporarily under-resolved = speedup

e how: perform high-resolution simulation () + train hybrid solver on a coarse-grained grid / approximate equations

m Use supervised L2 loss against the high-resolution ground fruth
+ additional losses capturing differences in important quantities (energy spectrum, strain, mean flow, ...)

xip? &= 10244¢ «10-1 t = 1024At
01— 1.2 ‘
With differentiable : [N\
physics gradient % =4 £>D~
5 9 % 1.0 A
(%]
Reference 0O c
o 31 € sl DNS
> .
Without O 41 £ — NoModel
| (supervised unroliment) = i — NNiog,
\ —51 ' s SUP10s;
. s —5n 0 O 10w ~10r 57 0 57 107
[Bjoern (2022)] y/b /6.

https://arxiv.org/abs/2202.06988

Z COMPASS

INSTITUTE OF PLASMA PHYSICS ASCR

Summary

° can improve standard methods of solving PDEs in terms of , and

O slowly penetrating into high-temperature fusion plasma simulations
O many schemes and applications how to combine NN and classical methods are possible, we touched just a few:

. l l NN model of D! + iterative optimizer for speed-up
. +
s i >
X ¢ "flox™
o l % ‘ l PINN for simplicity, flexibility and getfting mesh-free, but typically slow
& :

-

Yo

u'(af) u(d’r) u'(2dt) u(2d’r) [Hudty; 8) u(k-dlt) , o
l l l hybrid solver for precision and
- b speed-up (coarse-graining)

60,
\(SUO)

il

Z COMPASS

INSTITUTE OF PLASMA PHYSICS ASCR

Hybrid operators Physics Informed Neural Networks

- leverages and improves existing efficient numerical - simple flexible formulation, ease of use

solvers and discretizations - simple to combine multiple PDEs

(e.g. grad-shafranov equilibrium + braginskii

- efficient .
transport in SOL)
- good control of solution precision - exact analytical derivatives via AD
- mesh-free
Cons:
- more complicated implementation Cons:
- needs discretization - expensive evaluation

- incompatible with existing numerical methods
- poor conftrol of solution precision
- depends on the capacity of NN to
represent it and proper convergence

- needs deeper understanding of the solved problem

. | P P C(g COMPASS

Backup slides

[)
o | P P % COMPASS
. INSTITUTE OF PLASMA PHYSICS ASCR

ij
l residual

Poisson equation - spline solution

(typically not used but may help with understanding the principle of Physics Informed Neural Networks) 50
ij

1l

Poisson equation: AQ = @ ™

f
Find a spline representation of ¢ that solves the Poisson equation: 7 residual

supervised (BC, IC, ...) \ R=0

(p = (pknown

spline $, (x; 8): piecewise n-D polynomial with parametric continuity C*! 5o e
9 :

AD can compute exact spline derivatives

)

1. randomly 2. AD: at random points 3. Exact residual loss
P =S (% Vi 8 ggoml IS (x v 8)/ax N, L(x, y. 8) = 3[8°S,(x, y: 8)/0x* + &S,(x, y: 8)/dy*- (X, y)]
exact N 05 (X, y: ©)/dy* s + A Y0 - D)

