INSTITUTE OF PLASMA PHYSICS OF THE CZECH ACADEMY OF SCIENCES

MC modelling used in Plasma Edge Modelling

D. Tskhakaya

Institute of Plasma Physics of the Czech Academy of Sciences, Prague, Czech Republic

Coulomb collisions in PIC codes

Motivation

- 1. Classical PIC simulates only macro fields and neglects particle collisions.
- 2. Inside grid cells the interaction between particles deviates from the Coulomb law

$$\left(\frac{\partial}{\partial t} + \vec{V}\frac{\partial}{\partial \vec{r}} + \frac{\vec{F}}{m}\frac{\partial}{\partial \vec{V}}\right)f\left(\vec{r},\vec{V},t\right) \approx 0$$

We need

$$\left(\frac{\partial}{\partial t} + \vec{V}\frac{\partial}{\partial \vec{r}} + \frac{\vec{F}}{m}\frac{\partial}{\partial \vec{V}}\right)f\left(\vec{r},\vec{V},t\right) = St$$

Reminder

 $V_{Coulumb} \sim \frac{n}{T^{3/2}}$

Interaction force between two particles inside the grid cell

Coulomb collision models

27.03.2023

Binary collision model

27.03.2023

Questions?

Atoms and molecules in fusion devices

- Atomic and molecular fuel (D, T, D_2, T_2) : plasma fueling, NBI, plasma recycling
- Seeded **impurity particles** (*N*, *Ne*, *Ar*, *Xe*)
- Intristic impurity particles, sputtered due to plasma-wall interactions (*C, W, Be, Li, Fe, Sn, …*)
- Parasitic impurity particles penetrating into the plasma due to different processes (O, O₂,...)
- Fusion product impurity (He)
- Impurity particles used in different diagnostics (*Li*, ...)

Impurity particles can form molecules: $C_x H_y$, $N_x H_y$, BeA, WA (A=H, N, O)

General principle of MC model

Deterministic model of particle motion

$$\frac{d}{dt}\vec{r}_{i} = \vec{V}_{i}, \quad \frac{d}{dt}\vec{V}_{i} = \frac{1}{m}\vec{F}_{i},$$
$$\vec{F} = \vec{F}_{av.field} + \vec{F}_{collisions}$$

Deterministic + stochastic model of particle motion

$$\frac{d}{dt}\vec{r}_i = \vec{V}_i, \quad \frac{d}{dt}\vec{V}_i' = \frac{1}{m}\vec{F}_{av.field}^i,$$

 $\vec{V_i} \stackrel{Stochastic,}{\longrightarrow} \vec{V_i}$

Different ways of choosing the collision partners*

1. Counter based models

2. Non-counter based models: direct simulation MC (DSMC)

$$\begin{aligned} &(t) = 1 - \exp(-\upsilon t) \\ &= nu\sigma(u) \end{aligned}$$

Tskhakaya

DÍA

P

U

Counter based models

$$P(t) = 1 - \exp(-\upsilon t)$$
$$\upsilon = nu\sigma(u)$$

Colliding particle after t_{col} time.

$$t_{col} = -\frac{\ln R}{\upsilon} , \quad R \in [0,1]$$

$$\rightarrow$$
 r, **V**, t_{col}

For each particle one has to calculate and curry an additional parameter t_{col} Too expensive!

Null collision method [6]

1.

2.

1. Calculation of shortest possible collision time

Calculation of average time between collisions

- 2. Analyzing for collision after t_{col}^{\min}
- 3. Colliding these particles if

$$t_{col}^{\min}$$

$$R' \leq \frac{P}{P_{\max}} = \frac{1 - \exp(-vt)}{1 - \exp(-v_{\max}t)} \approx \frac{v}{v_{\max}}$$

 $t_{col}^{\min} = -\frac{\ln R}{2}$

 t_{col}^{\min} is same for any particle of the given type – less expensive!

What if different collision types can take place?

[6] H.R. Skullerud, J. Phys. D., 1, 1968

Different collision types

. . . .

Collision types^[7]

 $\rm N_{collided} \rightarrow \rm M_{products}$

- $2 \rightarrow 2$ elastic, excitation, charge-exchange, ...
- $2 \rightarrow 1$ recombination (radiative)
- $2 \rightarrow 3$ dissociation, ionization
- $2 \rightarrow 4$ double ionization, dissociative ionization
- $3 \rightarrow 2$ recombination (three-body)

If $R' \le \frac{v_1 + v_2}{v_{\text{max}}}$, then collision 2 takes place

Frequently used in SOL simulating Linear MC codes (e.g. **EIRENE**)

Linear MC codes: target particles are not followed, but represent a background with given density, temperature and EDF

EIRENE basics

EIRENE-NGM iterative scheme with the CFD codes [8]: NGM – Neutral Gas Module; CFD - computational fluid dynamics; CRM - collisional-radiative model

[8] https://www.eirene.de/Basics/basics.html

27.03.2023

Questions?

: IPP COMPASS

Non-counter based models (DSMC)

Particles are sorted into the grid cells

[9] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, (1994).

- Parameters in different cells are statistically independent
- Scales as ~N_{cell}
- Null collisional method can be applied

- 1 Calculation of maximum possible number of collided particles in each sell - $N_{\rm max}$
- $N_{\rm max}$ 2. Analyzing only particles.

Tskhakaya

Collision operators

Charge exchange: $D + D^+ \rightarrow D^+ + D$ $\begin{pmatrix} \vec{V}_1 \\ \vec{V}_2 \end{pmatrix} \Rightarrow \begin{pmatrix} \vec{V}_2 \\ \vec{V}_1 \end{pmatrix} \quad \sigma(E)$

Elastic: $e+D \rightarrow e+D$ $\vec{U} = \vec{V_1} - \vec{V_2}$ $\vec{U}' = \hat{\mathbf{O}}(\theta)\vec{U}$ $\vec{U}'F\begin{pmatrix}\vec{V_1}\\\vec{V_2}\end{pmatrix} \Rightarrow \begin{pmatrix}\vec{V_1'}\\\vec{V_2'}\end{pmatrix}$ $\sigma(E,\theta)$

Excitation: $e+D \rightarrow e+D^{(n)}$ $\vec{U} = \vec{V_1} - \vec{V_2}$ $\vec{U}' = \hat{\mathbf{O}}(\theta)\vec{U}$ $\vec{V_1} \rightarrow \vec{V_1}' = \vec{V_1} = \sqrt{1 - \frac{E_{th}}{E_0}}$

Ionization:

$$e + D \rightarrow 2e + D^+ \qquad \sigma(E, \theta, E_1, \theta_1)$$

 $\vec{U}'F\begin{pmatrix}\vec{V}_1'\\\vec{V}\end{pmatrix} \Rightarrow \begin{pmatrix}\vec{V}_1'\\\vec{V}\end{pmatrix} \qquad \sigma(E,\theta,n)$

 $e + Ne \rightarrow 3e + Ne_n^{++} \qquad \sigma(E, \theta, E_1, \theta_1, E_2, \theta_2, n)$

Tskhakaya

Double ionization: