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Numerical simulation is not theory!
Approximate theoretical models important, even if analytical 
solution does not exist 



What is numerical simulation?

• The numerical simulation is: writing a program and using 
the computer to perform a numerical experiment, which 
can show the time evolution of the nonlinear 
phenomena.

• Linear problems: analytical solutions are available for 
most linear problems, so numerical simulation is not 
necessary. Linear theory provides theoretical basis for 
validating the simulation results.

• Unfortunately, most plasma-based systems are highly 
nonlinear. So the numerical simulation could provide a 
more solid theoretical basis for studying a highly 
nonlinear and highly relativistic system.



Numerical simulation methods for LPP
• Plasma dynamics simulations

– Kinetic methods [⇒ distribution function f(r,p,t)]
• Particle methods

– Test particle methods
– Particle-particle methods (small particle number, inefficient)
– Particle-mesh methods – PIC
– Mesh-free methods – Tree codes
– Molecular dynamics methods

• Solution of equation for distribution function
– Vlasov equation
– Fokker-Planck equation (Vlasov-Boltzmann equation)

– Fluid (hydrodynamic) methods [ρ(r,t), u(r,t), T(r,t)]
• Two-fluid hydrodynamics (rare)
• One-fluid hydrodynamics (often 2 temperatures, radiation, …)
• MHD

– Hybrid methods - part of plasma (e.g. electrons or fast 
electrons) treated e.g. in kinetic way and part (e.g. ions or ions 
and thermal  electrons) e.g. via fluid methods



Numerical simulation methods (continued)

• Other simulations
– Preprocessors

• Atomic physics codes – EOS, opacities, atomic physics rates 
(ionization, recombination, excitation etc)

– Integrated to plasma dynamics
• Laser absorption and scattering
• Calculation of plasma ionization state
• Radiation generation and radiative transport
• Nuclear processes

– Post-processors
• Simulations of plasma radiation or particle sources

– Line emission from plasma (including detailed atomic physics)
– K-α emission  (including fast electron transport)

• Simulation of diagnostics results
– Synthetic shadowgrams, interferograms, proton deflectometry …



Laser target interactions
• Laser pulses (typical) – nonlinearity parameter vosc

2/c2 ~ Iλ2

– nanosecond – lower laser intensities (Iλ2 ≤ 1016 Wcm-2µm2), 
weaker non-linearities, macroscopic plasma dynamics 

– femtosecond – higher laser intensities (relativistic for 
Iλ2 > 1018 Wcm-2µm2)

• Targets
– low density (gaseous) – electron density < critical density, 

ideal (multiply ionized) plasma
– dense targets (liquid, solid) –
• in fully ionized solid electron density 

is 2-3 orders > critical density
• corona – ideal plasma
• energy transport–collisional plasma
• compression region – solid   



Plasma dynamics simulations
• Kinetic versus fluid description

– Kinetic description is more complete, but it has higher computational 
demands often imposing limitations (temporal, spatial, etc.)

– Kinetic models can treat highly nonlinear laser-plasma interaction
– Kinetic models are usually preferred for high laser intensities and short 

laser pulses and also for hot plasmas where kinetic effects 
(e.g. Landau damping) dominate collisional effects 

– Kinetic models are usually limited to weakly coupled plasma and 
they cannot treat global dynamics of laser interaction with bulk dense 
(solid or liquid) targets
(Microscopic processes in strongly coupled plasma can be modelled)

– Fluid simulations are preferred for moderate intensities, (sub-) 
nanosecond laser pulses and dense targets, global simulations are 
feasible (e.g. ICF)

– Fluid simulations treat non-linear interaction processes only in a 
phenomenological way, many processes have to be included using 
analytical models or experience from kinetic simulations



Kinetic plasma models
• Particle models versus solving kinetic equations

– Particle models usually search for distribution function via sampling 
using macroparticles

– Particle models are usually computationally more efficient
• Only occupied configuration space is sampled
• Fundamental physics equations are used
• Computer codes are usually relatively short
• Code parallelization is very efficient

– Additional info is available via particle tracking
– Particle models include some noise
– Solving kinetic equation directly is needed if small number of 

particles (e.g. energetic tail) is essential for the studied effect
– Also small scale structures can be resolved (obscured by noise in 

particle models)
– Kinetic equation is also solved for processes dominated by collisions 

(electron thermal transport, collisional absorption)



Simulations methods using particles
• Particle-particle method

– Limitation is the number of arithmetic operations required in the force 
evaluation scales as N2

– Needs special treatment of close encounters 
– Particle-particle approach is proper for small systems with N<106

• Particle-mesh method (Particle-In-Cell)
– Most popular, very efficient method for weakly-coupled, collisionless 

or weakly collisional plasmas
– Especially suited for high-intensity short-pulse lasers
– Computational mesh is an additional source of noise

• Particle-cluster methods (tree-codes, molecular dynamics)
– Less noisy, but higher computational demands
– Purely electrostatic interactions are included, induced magnetic field 

are neglected and no induced electromagnetic waves
– Used usually for small targets (e.g. clusters) and for studies of 

microscopic effects  



Particle-mesh technique
• Numerical mesh added to more effectively compute the forces acting on 

model particles.
• Force evaluation based on continuum representation of electromagnetic 

fields calculated from charge and current densities (Particle-in-Cell - PIC)
• The number of floating point operations typically scales as 

αN +βNgln(Ng)+γNg (N, Ng - number of macroparticles and grid points).

• Kinetic equation solved via sampling
• Macroparticles are clouds of particles (particle dimensions equal to grid 

cells dimensions, typically comparable to Debye length λD)
• Macroparticle has δ function distribution in velocity
• Using mesh practically filters out collisions (strong near binary correlations), 

thus collisionless Vlasov kinetic equation is solved by PIC codes    



Particle-in-Cell code
• The basic cycle of a PIC code

• PIC codes are suitable for uncorrelated (collisionless) or weakly correlated 
(weakly collisional systems)

• Such systems are dominated by collective modes due to long range 
Coulomb interaction, the range of wavelengths of these collective modes is 
bounded at the lower end by the Debye length λD due to efficient Landau 
damping of shorter modes, grid has thus little impact on collective modes

• Most of codes use explicit temporal differencing, the time step thus must be 
shorter or comparable with inverse plasma frequency ωp

-1.
• Implicit differencing enables longer time step but coding is more difficult.



Categories of PIC models
• Field components: Electrostatic, Magnetostatic, Electromagnetic
• Geometry: 1/2/3D 1/2/3V, boost frame
• Equation of motion: Relativistic or Non-relativistic
• Boundary conditions: Absorbing, reflecting or periodic for both particles 

and fields
• Binary collisions may be added (e.g. via Monte Carlo algorithm)

Flow scheme for a typical PIC-MCC code
Collisional PIC 



1D3V PIC + 3D time-resolved Monte Carlo simulations 
(J. Limpouch et al., LPB 22 (2004), 147–156)

I = 4×1016 W/cm2, θ = 30°, Al, τFWHM=120 fs



PIC simulations examples

electron beam acceleration

ion beam acceleration

generation of energetic radiation

electron-positron pair production



Particle-cluster technique
• Purely Coulomb interactions – laser can be included as external field
• The potential of a distant group of particles approximated by low-order 

multipole expansion.

• Various approaches – Molecular dynamics; Tree code
• If periodic boundary conditions are used, Ewald summation can take into 

account long distance interactions
• Operation count scaling in the force evaluation is below order N×ln(N).
• Requires more CPU time than PIC code, but noise is largely suppressed 

(small-scale features are much better resolved)
• Collisions (strong near binary correlations) can be modelled accurately 



Applications of particle-cluster technique
• Laser-Cluster Interactions

– Cluster dimensions smaller than laser wavelength, so only temporal 
variation of laser field included (macro-particles are used) 

– Open boundary conditions or periodic boundary conditions modelling 
set of clusters

MD simulation of Coulomb explosion of 
(H+I25+)2171, narrow radial distribution of H+ 

ions. In insets open circles I25+ , black dots 
H+. (I. Last, J. Jortner, PNAS 102 (2005) 1291)

Absorbed laser energy versus D cluster 
radius. Laser 800 nm, 50 fs, 1018 W/cm2

(Holkundar et al., Phys. Plasmas 21 (2014) 013194)



Applications of particle-cluster technique
• 3D Simulations of Laser-Target Interactions 

– Rare – small macroscopic target (P. Gibbon et al. – fs laser interaction 
with wire of 1 – 4 µm radius – Phys. Plasmas 11(2004) 4032)

– Parallel tree code PEPC (Pretty Efficient Parallel Coulomb-solver)
– Laser included via ponderomotive source term, phase matched to 

instantaneous critical surface + spatial variations (not self-consistent)

Electrons 50 fs after start of interaction of  
2.5×1019 W/cm2 laser with 4 µm wire (electron 
travel up to 30 µm from the wire (laser incident 
from the left)
Ion phase space at the end of run – x = laser 
direction (wire initially x = 0 – 50)  



Molecular dynamics for microscopic processes
• Collisional integrals in kinetic eq. use Coulomb Logarithm

• Approximately correct for weakly coupled plasmas
• Incorrect for strongly coupled (kinetic energy < potential energy)   

• P3M technique (book by Hockney and Eastwood)
• Point-like purely classical particles 
• Collisions (short-range particle interactions) are modelled accurately 

(often analytic two-body solution) 
• Long-range effects calculated 

by solving Poisson equation 
on a mesh

• Periodic boundary conditions   

Electron-ion relaxation rate versus 
plasma parameter g = Ze2/λDkBTe (line –
visual aid for constant Coulomb log) 
(Dimonte, Daligault, PRL 101 (2008) 135001 



Solution of equation for distribution function
• Vlasov equation

– Computationally more demanding, originally 1D codes, but 2D 
simulations are also performed at present

– Absence of noise, preferential when distribution tail matters or high 
noise leads to unphysical effects (pump depletion by noise)

– Trend to formation of small scale structures in configuration space, 
small number of artificial collisions usually introduced   

The phase space of relativistic KEEN 
wave in Vlasov simulations of stimulated 
Raman scattering (A. Ghizzo et al., Phys. 
Rev. E 74 (2006), 046407)

Phase-space contour plot of electron
distribution function at time (f) ωpet = 
1100. (M. Masek, K. Rohlena, Eur. Phys. 
J. D (2009), 79-90.)



Collisional kinetic equations
• Kinetic equations may use various collision terms – Fokker-

Planck is the most frequent (Boltzmann; Lenard-Balescu) 
• Overdense plasma between critical and ablation surface is 

usually highly collisional
• Studied effects (most frequently)

– Non-local electron heat transport 
– Collisional (inverse bremstrahlung) laser absorption and its impact on 

electron distribution
– Impact of atomic processes (ionization, excitation,…)

• Types of codes
– Vlasov-Fokker-Planck codes – fields calculated from field equations 

(Poisson eq. or Maxwell’s eqn.) – high frequency processes included
– Quasineutral Fokker-Planck codes – electric field calculated from 

quasineutrality condition – only low frequency processes modelled



Fokker-Planck equation

where FP collisional term on the right hand side is
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Numerical scheme
• Discretization - method of alternating directions
• Inner points

plus spatial and velocity boundaries plus edges  



dotted – Spitzer-Harm (SH)

λe – electron mean free path
k⊥ = 2π/LT (LT –temp. scale length)

2D Fokker-Planck simulation of 
target heating by nonuniform laser 
irradiation 

Thermal flux normalized 
on SH value for different 
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Fluid description
• Variables are moments of the distribution function
• Density 

• Average velocity

• Thermal (internal) energy  

• PDE in 

• Less computationally demanding, preferred for strongly 
collisional systems where distribution is near to equilibrium

• It needs equation of state ; 
for single fluid description mass density ρ is used

• It can treat any state of matter, it enables including dense 
cold regions into simulations  
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Fluid description
• Fluid equations describe conservation of particle number 

(mass), momentum and energy
• Two (electron and ion) fluid equations are rarely used due to 

short timescale (ωp
-1) and fast non-linearities (PIC preferred) 

• One fluid equations may be used due to quasi-neutrality
(consequently fast ~ ωp

-1 processes are omitted)
• Two (electron and ion) temperatures are often assumed as 

electron-ion energy relaxation is slow
• Radiation hydrodynamics is applied for higher Z targets as 

radiation transfer of energy is important
• Magnetohydrodynamics is used when imposed and/or 

self-induced magnetic fields are important
• When dissipative processes (thermal conduction, viscosity 

etc.) are omitted, fluid is described by Euler equations   



Euler equations 
• Euler equations = conservation laws for mass, vector of 

momentum and energy (hyperbolic PDE system) 
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• Here ρ is mass density, w is velocity vector, p is pressure and
E is total energy density expressed via internal energy density 
ε (                      ).

• EoS connects p,ε with ρ,T. It also calculates mean ion charge                        
. The simplest EoS is ideal gas, for more realistic simul-

ations either simplified analytic EoS (QEOS, Badger) are used 
or tabular EoS (SESAME) is interpolated (consistency?!)
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Additional terms 
• Laser absorption

– Stationary approximation is often used
– Ray tracing algorithm can follow propagation in underdense plasma 

(straight propagation inside cells, Snell’s law at the cell boundaries)
– Collisional (inverse bremsstrahlung) absorption in underdense plasma
– Reflection and absorption in the critical surface vicinity (hydrodynamic 

grid usually does not resolve wavelength → interpolation, approximation)
– Nonlinear effects (parametric instabilities etc.) may be taken into account 

in phenomenological way only
• Electron-ion relaxation

– Energy per unit mass gained per unit time by ions from electrons is

where ion specific heat dεi/dTi =3kB/(2mi) in ideal gas state and 
characteristic time for ion heating is τi =mi/(2meνei).

, where    is mean ion charge and ln Λei is 
Coulomb logarithm
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Additional terms - continued 
• Heat conduction

– Ion heat flux usually << electron heat flux
– Classical Spitzer-Harm electron heat-flux

– Heat conductivity derived for ideal plasma, one 
can modify collision frequency to obtain realistic
heat flux in cold dense areas (Eidman, PRE 2000) 

– Electric field is self-induced to eliminate particle flux (return current)
– Classical heat conduction is first order perturbation term, it is accurate, 

when LT/Lmfp ≥ 200 (due to Lmfp ~ v4)
– Temperature gradients are large in laser-target interactions, flux limited 

heat conduction is often used [Qlim = min(Qe,f×Qfree); f ~ 0.03 – 0.1]
– Flux limitation is crude incorrect approximation, heat flux is non-local; 

some kind of convolution is needed to express non-local heat flux, 
problems in multi-dimensions; SNB model (Schurtz et al. 2000) introduced 
analytical solution of BGK kinetic equation and derived suitable form of 
closure for expression of non-local heat flux  for fluid codes
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Radiative transport 
• Radiation transport plays essential role for high-Z targets
• Radiation transport is described by equation

where is the radiation spectral intensity, angular 
averaged spectral intensity , kν’ is the opacity 
(including stimulated emission), σsν is scattering coefficient 
and the emissivity jν= kν’Iνp

• Energy density and energy flux  
• Radiation transport is solved in multi-group approximation or 

more simply in one-group (grey) approximation
• Diffusion approximation
• Transport is diffusive in dense cold target, but is near to free 

streaming in hot corona (non-local radiative transport)  
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Types of computational meshes
• Eulerian methods

– Numerical methods for solving fluid equations on a static computational 
mesh

– Fluid moves through the computational mesh in form of mass fluxes
– Advantages – typically simple (easy to implement) methods; well 

understood mathematical 
theory analyzing their accuracy 
and numerical stability; similar 
for all physical quantities

– Disadvantages – not suitable 
for tasks with significant expan-
sions or compressions in the 
computational domain; difficult 
simulation of fluid-vacuum 
boundary

Numerical example – Rayleigh-Taylor instability (Fung et al. 2006), 100×600 Eulerian mesh



Problems of fluid simulations
Eulerian simulations cannot include 
vacuum – gas with density << critical 
density, but >> density in chamber

Expanding plasma launches shock 
wave into gas – unphysical high 
temp at plasma/gas boundary 
(Ti ≈ 30 keV, Te ≈ 5.2 keV), FLASH
code, He density 10-8 g/cm3, Al 
target 30 µm thick, t = 400 ps

Ray-tracing algorithms of laser 
propagation often lead to numerical 
filamentation of laser beam

Right – absorbed energy distribution, 
left – ray trajectories + laser intensity
Time 400 ps (laser maximum), max. 
intensity 1.2×1015 W/cm2, λ = 439 nm,
Gaussian pulse FWHM length 400 ps, 
FWHM width 100 µm (Gaussian)



Lagrangian formulation
• Lagrangian coordinates are attached to the fluid and moving 

with it
– Mass is constant in each cell, no mass fluxes through cell boundaries
– Motion of node n is defined by  
– One fluid two-temperature equations in Lagrangian formulation  
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where pe, pi are electron and ion 
pressures, εe, εi are electron and ion 
specific internal energies, fV is volume 
force, εR is radiation energy density, G is 
coffient of electron-ion energy relaxation, 
Qe, Qi, QR, QL are energy/heat fluxes of

electrons, ions, radiation 
and laser field

• Advantages – moving mesh naturally follows the fluid (including plasma-
vacuum boundary), suitable for severe expansions or compressions

• Disadvatages – mesh can tangle (leading to errors and method failure)



Lagrangian fluid simulation result 
(interaction of subnanosecond pulse with foil) 
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O. Renner, J. Limpouch et al., 
JQSRT 81 (2003), 385-394.
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(a) Density profile, (b) Temperature profile – in 
time of maximum emission of studied lines -
300 ps after 400-ps laser pulse maximum. 
2D Lagrangian fluid simulation in cylindrical 
geometry. Laser beam λ = 0.439 µm (3ω) of 
radius 40 µm normally incident on 5 µm-thick Al 
foil, laser energy 58 J, Imax= 3×1015 W/cm2

Time-integrated spectrum 
in region of lines of H-like 
Al emitted 50 µm behind 
original foil position 
tangentially to the s foil –
measurement VJS and 
post-processor XEPAP

ρc≈0.02



Arbitrary Lagrangian-Eulerian (ALE) Method
• Combination of Eulerian and Lagrangian approaches

1. Lagrangian computation of several time steps
2. Rezoning – mesh untangling and improvement
3. Remapping – conservative interpolation of the conservative 

quantities to the new, better mesh
– 2. and 3. correspond to the Eulerian part

Numerical example – PALE code - Flyer-target impact – left panel – computational mesh and 
temperature contours (shock wave, phase interfaces) at 80 ns; right panel – density colormap of the 
critical part of the computational grid (a) initial grid before computation (b) very distorted Lagrangian
grid at 0.5 ns includes non-convex cells (c) ALE grid is still fine at the end (80 ns) of computation



Magnetohydrodynamics
• Equation for quasi-static magnetic field (extended MHD)

Here, the last term is the Biermann battery source term of magnetic field, 
the  first term is magnetic field diffusion and the second term is magnetic 
field convection with advection velocity

• Biermann battery term is key source for 
laser targets (not placed in external B) 

• Proper discretization of Biermann battery 
term is difficult and many astrophysical 
codes do not include it

• Classical Braginski transport coefficients 
(1965) were improved by EH (1996), fitting 
of cross-Hall δ∧ and cross-Nernst γ∧ erroneous 
at low magnetization                     (Sadler 2021)



Magnetohydrodynamics -applications
• Laboratory astrophysics

– recently demonstrated dynamo amplification in turbulent plasma 
(Tzerefacos et al., Nature Comms 2018)

Laser shield

Support struts

Stalk

Laser beams are incident on targets (middle panel) placed into laser shields. Accelerated plasmas penetrate 
through grids and collide in the middle. Density calculated by 3D magnetohydrodynamic code FLASH (right)        
– Magnetic field in early phase of collision ≤ 4 kG, consistent with 

Biermann battery source (it does not grow for one-side irradiation)
– Magnetic field is amplified to 100 -120 kG during collision
– Magnetic Reynolds number ~600 reached (above dynamo threshold)

• Self-induced magnetic fields studied for ICF (Lancia, PRL 2014)
• Special targets  

Capacitor- coil target
Snail (escargot) 
target



Hybrid models 
• Hybrid means that different types of particles are modelled in 

different way
– In astrophysics often ions are treated as particles and electrons as 

mass conduction fluid
– In ultra-intense laser interactions – electrons accelerated by laser to 

high energies propagate into target and return current is induced to 
sustain quasi-neutrality

– Hybrid simulations – particle simulation is run for fast electrons and the 
rest is modeled as conducting fluid ( , where jb is background 
return current and σ is electrical conductivity at background Tb). 
Background current is expressed from fast electron current jf and B

/bE j σ=
 

0/ ; /b fj j B B t Eµ= − + ∇× ∂ ∂ = −∇×
   

• Interpretation of fast electron diagnostics and electron fast ignition studies

Typical simulation setup; fast electron trajectories; azimuthal magnetic field (T) (Honrubia, LPB 2004)



Summary
• Extremely broad range of simulation types is 

used for laser plasma interaction physics
• Main types of plasma dynamic simulations are

– Kinetic models - simulate detailed non-linear physics 
of interaction, but cannot treat global evolution of 
dense targets, 
kinetic models are subdivided to   

• Particle models
• Solution of kinetic equations

– Fluid models – more simple, can treat solid targets 
globally, but interaction physics is described only 
phenomenologically

Thank you for attention
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