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Overview

e Hydrodynamic simulations.

e Euler equations in Eulerian and Lagrangian frameworks.
e Arbitrary Lagrangian-Eulerian (ALE) methods.

e Staggered compatible Lagrangian scheme.

e Mesh rezoning techniques.

e Quantity remapping.

e Physical models for LPP.

e Examples of hydrodynamic ALE simulations.

e Conclusions.
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Hydrodynamic (fluid) simulations

Hydrodynamics = dynamics of fluids.

Description of fluid by a set of (hyperbolic) PDEs,

solution by tools of Computational Fluid Dynamics
(CFD).

Fluid properties represented by macroscopic
quantities — density, velocity, pressure, specific
internal energy, . ..

Discretization:
— space: computational mesh, cells ¢;

— time: sequence of meshes, time levels n.

Approximation of continuous density (other

quantity) function p(Z,t) by its discrete values

J
n+1
OTL
Pe -
n—1

pe = p(Ze, ).

Transformation of system of PDEs for p(Z,t) to

system of algebraic equations for p.
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Euler equations

Simplest approximation — Euler equations.

System of hyperbolic PDEs representing conservation of mass, momentum,
and total energy:

pt + div(pw)=0, (1)
(p@); + div(p ) + grad p=0, (2)
E; + div(@ (E + p))=0. (3)

Here: p — density, @ — velocity, p — pressure, E = pe + 2 p|w]? - total
energy density, € — specific internal energy.

More unknowns than equations — system enclosed by equation of state
(EOS): p = P(p,e). ldeal gas — p = (v — 1) pe, where v — gas constant
(ratio of its specific heats).

General fluid (plasma) — complicated (non-linear) EQSes, often tabulated.
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Transformation from Eulerian to Lagrangian framework

e Transforming system to moving (Lagrangian) reference frame.

e Example — conservation of mass in 1D: p;+(pu), = 0, expanding derivative:
ot +upr 4+ puy =0.

e This can be written as % + pu; = 0, where % — % + %a% — %qtua%
is the Lagrangian (total, material) derivative.
e |In multiD: l%:%—kw-v.
e Similarly for the whole system:
Dp
— V- -w=0, 4
Ty TPV - (4)
D w S,
—— -V p=— 0, 5
Py VD ()
De
— V- -1w=0. 6
v AT (6)
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Lagrangian motion

e Motion of Lagrangian particles described by an ODE: g—f = w, typically

i

defines motion of mesh nodes.

Location of velocity w:

— in mesh cells — cell-centered methods: all
quantities located at the same place, need to use
approximate Riemann solver at each node to define
its velocity;

— in mesh nodes — staggered methods: mesh
motion directly defined, different location of
thermodynamic (p¢, p., €.) and kinematic (,)
quantities.

Computational cells considered to be Lagrangian
particles: no mass flux between cells = density
given by cell shape (volume), no need to solve mass
equation.
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Euler equation — notes

e Eulerian form — usually for conservative quantities, Lagrangian form — usually
for primitive quantities, equivalent.

e Inter-connected system of PDEs — cannot be solved analytically (except for
few special cases) = numerical methods.

e Remains to define IC (p(Z,t = 0) = po(Z)) and BC (wall, free, periodic,
physics dependent, . . . ) — can be most difficult.

FACULTY OF
NUCLEAR SCIENCES

FoRs 7

CTU IN PRAGUE




Eulerian vs. Lagrangian methods

e Eulerian methods:

— Fixed computational mesh, not changing in time.

— Fluid moves between mesh cells in the form of mass fluxes.

— Simpler methods, easier to analyze.

— Problem: Not suitable for highly-volume-changing problems — typical
in laser/plasma simulations, where strong material compressions and
expansions occur.

e Lagrangian methods:

— Computational mesh moves naturally with the fluid.

— No mass fluxes, constant masses in cells.

— Optimal for strongly changing domains.

— Problem: Due to mesh motion, mesh can degenerate — non-convex, self-
intersecting, or completely inverted cells — increase of numerical error or
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Arbitrary Lagrangian-Eulerian (ALE) methods

e Combination of both approaches — mesh following the fluid motion +
guarantee its validity!!.

e Recently very popular, present in many hydrodynamic laser/plasma codes.
e 2 types: direct vs. indirect ALE.

e Direct ALE methods:

— Separate fluid and mesh velocities.

— More complicated equations — formulation of fluid flow on differently
moving mesh — convective term representing mass flux.

— Filtering dangerous velocity components (shear flow, vortexes) out from
the velocity field.
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Indirect ALE methods

{Initialization J

e Explicit separation of 3 steps: t=01:1=0
— 1) Lagrangian step = solver of "Main |Oop}
PDEs, evolution of fluid quantities Lagt Eul
and mesh in time; ',Estim:te At [ o }
— 2) Rezoning = untangling and e — AR | _l
smoothing of computational mesh, |/ |; —; 4 ’ {Mesh rezoning}
increasing its geometric quality; :
— 3) Remap = conservative inter- :(Lagrangian solver \ ?Remap
polation of all quantities from {| ® Fluid quantities 1/ o |nterpolate Pes Ec
Lagrangian to rezoned mesh. : Eﬂgséh MM, : E‘ﬁiﬁgﬁ'?ff g
e Rezone + remap = Eulerian part of |. (0> i) V| :'-.‘. MOF, pe, o/
the ALE algorithm (fluxes). " low mer;lﬁxqua“ty Fyge:
e Different strategies for triggering NO' - .
rezone/remap on  (degeneracy, = '{Wh”e t < tmax}*_
Eulerian, counter, . . .) { Fi:ish }
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Example: Sedov blast wave

Euler Lagrange ALE20

t=0.00 1=0.00 1=0.00

1 1F 1
0.51 0.57 0.51
0 orH 0
05" -0.57 -0.51
1 -1r 1
-1 -O.‘5 6 O.‘5 ‘i -1 -0:5 CI) 015 1‘ -1‘ -0:5 6 0:5 ‘i
(=Jee+) (=) (+] (=Jer(+]
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Step 1: Lagrangian solver

e Solving the system of Euler equations in Lagrangian form:

Dp .
Dt —pV - w, (7)
Dw
’OD—t = —Vp, (8)
De S
'OD—t = —pV-w, (9)
with ODE for motion of mesh nodes
DZx
— 0, 10
5= Y (10)
and equation of state
p:P(,O,g). (11)

e Compatible Lagrangian scheme in staggered discretization (mimetic or
support operators method)!!!.
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Step 1: Lagrangian solver

e Conservation of mass (7) — constant cell mass m,. = automatically satisfied.

e Integration of momentum equation (8) over dual (nodal) volume V,,,

D w D w _
— ] = _ — — [P
My, (Dt)n Y av /VpdV_Fn. (12)
n Vn
e Forces on the right hand side can be written
a3 FE= > FP,, (13)
ceC(n)

where F? is force from cell ¢ to node n due
to pressure in ¢, can be computed from cell
pressures and cell geometry.

e Left hand size — approximation of velocity derivative by finite difference:
_,tn+1 T

Dw w, — W, 1 no o At o
—| = = W = w, +—FP. 14
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Step 1: Lagrangian solver

Motion of computational mesh nodes from (10) — again finite difference

Computation of new cell volumes V.

Update of cell densities

_}tn—i—l

L,

tn—l—l

tn—l—l

. —)tn —>t*
z, + Atw, .

from cell geometry.

pc — 777’(3/‘/Ctn+1 .

Total energy: internal + kinetic:

E:chac—l-Z%
Ve n

where
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§ mc,n !

neN(c)

Ye

:Z Mg Ep AF Z

neN (c

é mc7n .

ceC(n)

(15)

(16)

mc n HwnH2 r
(17)

(18)
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Step 1: Lagrangian solver

e Conservation = 0FE /0t = 0, true if in each cell: 9F./0t =0,

886 — (9 W,
Me—me=— Y My |lwl | ”EWC. (19)

e Substitution for velocity derivative from (12) =

80 c,m — =
mc(;; = W,., where W,= — gv:()m’ W, - FP_ . (20)

e V. = released/removed heat in cell ¢ due to its compression/expansion,
can be explicitly computed.

e Energy update by central difference again,

n n At
el +1:5’é + —W.. (21)

(&

e Due to this construction: exact energy conservation up to machine precision.
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Step 1: Lagrangian solver

e Remaining only pressure update — from EQOS (11),

tn—l—l tn—i—l tn—l—l
=P (o). (22)
e Resulting scheme conservative in mass, momentum, and total energy.

e Usually used in two-step (predictor-corrector) form — prediction of pressure
and velocity to t"+1/2 — second order of accuracy.

e Next to pressure forces, other forces can be added:

— Viscosity forces F9_ — stabilization of the scheme (elimination of
oscillations) at shocks, several models!!:2!.
— Subzonal-pressure forces FCdf;L — finer pressure discretization, reducing

unwanted mesh degeneracies (hourglass)!?l.
— Other forces due to physical modes, such as gravity forces, . . .
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Step 2: Mesh rezoning

e Mesh rezoning = mesh untangling (making it valid) and smoothing
(increasing its geometric quality).

e To avoid excessive diffusion of the solution in the following remapping step
— move only nodes needed to move, and as little as possible.
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Step 2: Mesh rezoning

Many rezoning methods.

In realistic computations — efficient methods
(3D), e.g. Laplace or Winslow.

Laplace: new positions as weighted average,

~

fi,j — E Wik, j+1 fz'+k,j+z, where E Witk j+1 = 1. (23)
kil=—1,1 kil=—1,1

Winslow!": based on solving of elliptic PDEs in logical directions,

1 T r e —
2 (ak + fyk) (ak (ZCz',j+1 + 5137;,3'—1) + ,yk (:Ei_‘_l’j + gi_l,j) (24)

Tij =

1
k — — — —
—55 (337;+1,j+1 — L1541 T Ti—1,j-1— $¢+1,j—1)>,

where coefficients o = x2 + yZ, B = ¢ 2y + ye Yy, ¥ = @2 + 42, and where
(&,7n) are the logical coordinates.

More advanced methods — eg. CN minimization, RIM?/. For untangling —

modified CN minimization, feasible set!3!.

NUCLEAR SCIENCES [1] Winslow: LLNL Report, 1963.

ENCINEERINE [2] Knupp, Margolin, Shashkov: JCP, 2002. 18
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Step 3: Quantity remapping

e Remap = conservative interpolation of all fluid quantities from old
(Lagrangian) computational mesh to new (rezoned) one.

e Given: values of given quantity (e.g. density p.) in the cell centroid

To=% [ZdV, V.= [,1dV.

e Understood as mean values of unknown underlying density function p(%):

m, — / o(Z) AV,  pe=my/Ve. (25)

(&

e Goal: compute new masses

mg & /p(f) dVv (26)

C

and mean values pz = mgz/Vz in the rezoned cells ¢.
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Step 3: Quantity remapping

e Requirements:

— Conservation: Y m. =) -ms.
Solving conservation laws, do not want to spoil it.

— Accuracy: pz =~ p(¢).
Mean value should be close to the function value in the cell centroid.

— Linearity-preservation: p(Z%) linear = pz = p(Zz).
Implies second order of convergence.

— Consistency (continuity): ¢ = ¢ = p. = ps.
Do not want to change value is cell did not change.

— Bound-preservation: p® < pz < p**, where p™™ = mingeo(e) Pe-

Only interpolation = do not want to create new extrema.
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Step 3: Quantity remapping — Reconstruction

e First phase — piece-wise linear reconstruction of density function (2D):

o)l = pea) = et (52 ) (a0 + (

e Slopes (0p/0x)., (Op/0y).:
— Integral average over super-cell: .
(0p/0x). =~ %&jgc(ap/ax) dv.
— Minimization (LS) of error functional: ‘
(0p/0x). ~ arg min ®(0p/dx,0p/0x),

B(9p/dr,0p/0x) = X ||p(@)| ~ per|” .

c'eC(c)
— Other possibilities.
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Step 3: Quantity remapping — Reconstruction

e Usually with limiter, e.g. Barth-Jespersen!!!:

(9p/0). = W (0p/0):"™, where W, —min ..., and
ceClc

min (1, Be__—_Pe ) for punlim(n) — p. > 0

perlim(n) —pe &

Yen = | min (1, Fe_—Pc ) for punlim(n) — p. < 0

C

1 for punlim(n) — p. = 0.

C

Pc+1
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Step 3: Quantity remapping — Exact integration

e Most natural method based on cell intersections

f,o YAV =3 [ p(@)dV =Y [ po(Z N

V! éne! V! éne! /|

e General geometry = global remap.

e Conservation obvious, limiter = local extrema.

17

e Same topology = can be formulated in flux form[l]'
_mc—|—z c—>c’FCm—>c_pr dv fIOC dv'.

cc

c'eC(c) Egles ¢'Ne
_ C
e Flux form = conservation guaranteed = more freedom
in flux construction. _
~! C

e Problems: computationally expensive, robustness, 3D.
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Step 3: Quantity remapping — Approximate integration

1].

e Flux approximated using swept regions!
mz = me+ »_ FI", where FI" = [p«(Z)dV, ¢* = ¢/c.
ee&(c) Qe

e No intersections needed = less computationally

c

expensive, robustness.
Qe
e Problem: in certain parts of new cells (corner flux, o

rotating edge), approximation from wrong cell is used =

local bound violation.
e Several options for fixing this:

— A-posteriori mass redistribution (repair)!?);
— Flux Corrected Transport (FCT)!!:
— Multi-dimensional Optimal Order Detection (MOOD)*!;

e Difficult generalization for multi-material case.
T G [1] Dukowicz, Baumgardner: JCP, 2000.
FaAeY NUCLEAR SCIENCES [2] Kucharik, Shashkov, Wendroff: JCP, 2003.
/t?? ENGINEERING. [3] Kuzmin, Lohner, Turek: Springer, 2005.
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Remap of all fluid quantities

e Up to now — only remap of p, m.
e Remap of ¢ — similar as density.
e Pressure — usually computed from EOS, but can be remapped too.

e Remap of W — simple in cell-centered methods (same manner), more
complicated in staggered discretization.

e Kinetic energy computed from remapped velocities — non-linear — violation
of kinetic energy conservation = wrong shock speeds, wrong plateau height,

e Typically treated by energy fix!l: remap kinetic energy independently and
distribute its discrepancy to internal energy.

e Several options for velocity remap.
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Remap of all fluid quantities

e Double-fine mesh!!l. e Inter-nodal fluxes!?l. e Remap on dual cells!3'.
e Simplest way: e Interpolation of I .~ e The rest same as for
m _ .
N B from V Fo. .. u flux:  other quantities.
,uc,n - mc,n U, F,U — yrec Fm
_ s n’'—n n'—n " n'—n"
remap fen — Hé
- Up = Z e n/mn m
pnt D F
ceC n) n/ €N (n) n’'—n
® Up = pr—
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Multi-material ALE

e Lagrangian simulation — different materials in different ?-C
cells, remain there for the whole simulation. g

Ok
e ALE = mixing unavoidable = numerical interface ek
diffusion, useless EOS, . . . i

e Solution: multi-material ALE.

e Concentrations X splitting of cell ¢ to polygons ci representing particular
materials k£, thermodynamic quantities separately for each material.

e Additional: material quantities — relative volume (volume fraction) a. g,
eventually approximate material position (centroid) Z. .

e Splitting of ¢ to ¢, = material reconstruction!!: Volume of Fluid (VOF)!?,
Moment of Fluid (MOF)?l, . ..
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Multi-material ALE — Differences

e In Lagrangian step — additional model for material interaction (closure
model) defining interface motion — evolution of a. .

e In rezone — no difference. Methods minimizing rezone at material interfaces.

e |In remap — generalization of exact integration — instead of intersection with
original cell ¢, so intersections with all its material polygons ¢!,

e Next to remap of standard fluid quantities, remap of a. j and Z. k.

e Reconstruction/remap of velocity vector must be performed in a consistent
way, otherwise can lead to conservation violation due to non-linearity of
kinetic energy!?!, or symmetry violation of velocity field!3!.
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Physical aspects — Model

e Laser plasma — simplest approximation by modification of energy equation:

dp

il - 4T 28
dw

— = —Vp, 29
P p (29)
de _ .

where T is temperature, x is heat conductivity coefficient, and [ is laser
beam intensity profile.
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Physical aspects — Laser absorption

e Simple model of laser absorption on the critical surfacel'/.
e Laser radiating from upwards — I = (0, —L,(¢,r)), Gaussian profile.

e On each edge — projection of intensity to the normal direction I..

e Interpolation of nodal density from
neighbors.

e Density in all cell nodes sub- or super-

—

critical = (D I). = 0.

e Mixed= (DI).=< Y L%(e) L,
 ecéc
L?(e) — subcritical edge length,

I. — projected intensity along edge.

e Equation of absorption: p% +pV -w=-CyV- I, C4 — coefficient.
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Physical aspects — Laser absorption

e Problems — (C'4 needed from user + full absorption in one cell leading to
series of “cell explosions”.

e Several more advanced models.

e Raytracing!!! — explicit tracking of each single ray in the domain, including
its refractions on the cell boundaries.

e Wave-based models employing stationary solution of Maxwell equations!?.
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Physical aspects — Heat conductivity

e Represented by parabolic term in the energy equation.

e Separated by operator splitting to the form pe; = V - (k VT), transformed

to temperatures T; = piT V- (kVT).

e Solving using support operators method!!/.
e Temperature derivative of energy e computed numerically.
e Classical Spitzer-Harm heat conductivity coefficient

9 3/2 k7/2 T5/2
K = 20 (—) —— e (31)
T J/mee Z InA

corrected by electron-electron collision term 9., = 0.095 %, where k is

Boltzmann constant, m. is the electron mass unit, e is the electron charge,
Z is the plasma mean ion charge, and In A is the Coulomb logarithm.
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Physical aspects — Heat conductivity

e Green/Gauss theorems express integral properties of operators:

— Generalized gradient W=GT =-kVT

= = \VA In V

— Extended di DW = -

xtended divergence _(W.7) on 8V

e Mimetic discrete operators G, D have the same discrete integral properties,
namely gradient is adjoint of divergence G = D*.

e Fully implicit scheme in time (T —T")/At+ DGT"" =0 .
e Explicit not suitable: CFL = many steps per 1 Lagrangian step.

e Matrix of global system is symmetric and positive definite — conjugate
gradient method.

e Exact on piecewise linear solutions, otherwise it is second order accurate
in space. Works well on bad quality meshes, allows discontinuous diffusion

coefficient.
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Physical aspects — Heat flux limiter

e Standard methods can provide higher heat flux W than physically feasible —
need to limit it.

e Compare sizes of heat fluxes with local free stream Ilimit
Whim = gmax b [k Zpp3/2  \where the coefficient f™®* € (0.05,0.3)

My MmMe

(between 5% and 30% of the physical limit).

W’

e Compute values ¢ = and renormalize the conductivity coefficient

kK = c Kk In each cell.

e The conductivity equation is then solved for the second time with new &,
ensuring the limit is not exceeded.

e Need to solve the global system twice — new temperatures/energies more
realistic.
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Physical aspects — EOS

e EOS crucial, strongly affects realistic simulations.
e |deal gas for simple fluid test, reasonably valid in low-density corona.

e Realistic EOSes — significantly more computationally expensive, often
tabulated.

e Quotidian EOS (QEOS)!! for real plasma — Thomas-Fermi theory for
electrons and Cowan model for ions.

e Sesame EOS!2] — tables of measured values -+ several material theories
providing interpolation techniques.

e Various modifications — such as Badger or FEOS.

e HerEOS!3! — library for Hermite interpolation of tabulated data.
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Physical aspects — ALE in cylindrical geometry

e Many laser-related processes are cylindrically symmetrical, 2D code with
cylindrical geometry well approximates 3D reality.

e Switching to cylindrical geometry = adding » factor into all integrals —
different volumes, centroids.

e Lagrangian solver — adding r factor leads to Control Volume scheme:
integration mainly in forces.

e Mesh rezoning — no change, done as in Cartesian case.

e Remap: r arises during integration.
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Physical aspects — Others

e Many other models can be needed /usefull:

— Two-temperature model — separate electron/ion temperatures — two
energy equations + heat exchange term. More realistic for non-ideal
plasma.

— Phase transition model — taking into account latent heat of melting and
evaporation, important for interaction with solid targets.

— Non-local energy transport — represents long-distance transfer of energy
due to material radiation.

e Most of described methods implemented in Prague ALE (PALE) code —
Fortran, 2D Cartesian/cylindrical geometry, staggered ALE, realistic EOSes,
laser absorption, heat conductivity + limiter, two-temperature model, . . .

e Simulations of laser/target interactions, experiments at PALS or ELI.

FACULTY OF
% 5y NUCLEAR SCIENCES
? AND PHYSICAL
/t’g ENGINEERING
CTU IN PRAGUE 37



Fluid examples: 1D Sod problem
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Fluid examples: Rayleigh-Taylor instability
100 x 600 mesh, MM, Eulerian regimel'
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e Interfaces
materials!!.

Fluid examples: Triple point problem

among  three

3
Y=15
p=0.125
Y=15 p=0.1
p=1 1.5
p=1 Y=14
p=1
p=0.1
0
0 1 7

e Higher pressure generates
shock, different properties of
right materials = vortex.

e Eulerian run, thin filaments.
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Fluid examples: Jet through a hole in a wall

e Hole in a walll'l (inactive cells),
larger left pressure = jet.

e Deformation of cells around the hole,
ALE simulation failure.

e Feasible-set mesh untangling =
Increased robustness.

ALE 20 ALE 20 + untangling

0g i

0.8 51N

0.7 I

0.6 ST

0.5 ¥

0.4

0.3 Bl

0.2 S

0.1

" - 0
1] o1 0.2 0.3 0.4 05 0.6 o7 0.8 09 1 1] o 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1

e (=Je(+)
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Laser examples: Disc impact

e Simulation inspired by experi- LASER LASER

ments on PALS system!!]. DISC FLYER

e Laser evaporates disc target,

acceleration to tens/hundreds
km /sl2].

MASSIVE TARGET

e Impact to massive target.

e Melting and evaporation of
material, crater formation.
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Laser examples: Disc impact — 1) ablative acceleration

250 211
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0
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e Geometrical computational mesh, in disc only.
e Laser absorption, material evaporation upwards.

e Massive part of the disc accelerated downward due to ablation (momentum
conservation).
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Laser examples: Disc impact — 1) ablative acceleration
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Laser examples: Disc impact — 2) interpolation
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Laser examples: Disc impact — 3) impact, crater
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e Comparison of Lagrangian and ALE simulation short after computation
starts, Lagrangian fails.

e ALE does not influence the result too much (slight shock diffusion), but
mesh improved significantly.

e Impossible to finish simulation without ALE.
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Laser examples: Disc impact — 3) impact, crater

e After impact — material compression, increase of temperature.

e Inside target:
evaporation of target.

e Corona (plasma plume) spreading outside.
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Laser examples: Disc impact — 3) impact, crater

e Crater formation — liquid/gas phase interface.
e Mesh remains smooth, the simulation can continue further.

e Comparison of crates sizes to experimental values — reasonable agreement!"
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Laser examples: LICPA scheme

e Laser induced cavity pressure acceleration!!.

e Preparation, analysis, interpretation of PALS experiments.

e Simulations of processes in channel covered by a cavity.

" TR
. . :| \;/ - L
e Cavity = large portion of laser energy transferred to shock| 2 o 32
wave = higher impact velocity, larger craters. z 5%

) =
m T — 20

— > m

e Many configurations: with of ablator/projectile, material of 52

projectile/target (CH, Al, Cu, Au), laser energy (100 — 400 J), ps s
laser frequency (1w, 3w). SHOCK WAVE
MASSIVE TARGET

e Different aspects of experiments, hydroefficiency.

e Comparison of simulations and experiments (impact velocity,
shock speed, crater size) = reasonably good agreement.
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Laser examples: LICPA scheme

Absorption

8

~o 50 100 150
(=)

Accel. + impact

-1000 7
|

-1200-

-1400

-1600-

2
-1800
1
-2000 )
0 50 100 150

r [um]

(=)

FACULTY OF
NUCLEAR SCIENCES

/‘%J‘%é AND PHYSICAL

g ENGINEERING
CTU IN PRAGUE

Shock formation

lm
S b5
- io

0 50 100 150 200
r [um]

(=)be(+)
Crater development

I100.0
'0.085

i0

500 1000 1500
r [um]

200J, 3w(438 nm)

temperature [eV], time = 0.0 ns

(=Je(+)

50



New trends in ALE hydrodynamics
e ALE+AMR (Adaptive Mesh Refinement)!!

— automatically finer mesh in interesting regions

(shocks, interfaces, physical phenomena, . . . );
— higher effective resolution, uncomputable in whole
domain:

— necessary in Eulerian codes, useful in ALE.

e ReALE — reconnection ALE!?

— changing mesh topology, cell follows the fluid;
— significant improvement in regions of sheer flows
or vortices.

e Curvilinear ALE®! — curved mesh instead of straight

— cell can significantly deform during fluid motion;
— prevents most of tangling, increased robustness,

less ALE.
Y NUCLEAR SCIENCES [1] Anderson, Elliott, Pember: JCP, 2004.
/‘:ﬁ? ENCINEERINE [2] Loubere, Maire, Shashkov, Breil, Galera: JCP, 2010.

CTU IN PRAGUE [3] Anderson, Dobrev, Kolev, Rieben, Tomov: SIAM JSC, 2018.



Conclusions

e Lagrangian and ALE methods suitable for laser/target simulations.
e Physical models crucial for realistic results.
e Current codes able to perform realistic laser/target computations.

e Ongoing research, attractive topic.
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Thank you for your attention.
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