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Aim of the presentation

e Introduction to line emission simulations
e Presentation of suite of codes developed

e Examples of results

Applications of line emission

e Diagnostics applications

— Measurements of plasma density, electron temperature
— Line ratios

— Line forms
e Plasma as intense source of quasimonochromatic emission

— ultrashort x-ray pulses for pulse-probe material diagnostics

— x-ray source for biologic imaging and for lithography



Plasma dynamics simulations

Magnetohydrodynamics codes - 1D, 2D

Hydrodynamics codes - 1D, 2D, (3D)

plasma density, electron and ion temperature, average ion charge

Fokker-Planck codes (+ electron distribution)
e (PIC codes - usually only low density and details)
e Atomic physics model - mostly not with spectroscopic precision

e Average atom approximation widely used, simplified collision-radiative
model and other approaches also possible

e Radiation transport - typically multigroup diffusion - continuum, groups
of lines for high Z

Atomic physics post-processors

e Based on assumption - line emission does not influence energy balance
significantly



Post-processor problem formulation

e lonization and excitation states populations coupled with radiative trans-
fer

e Rate equations for populations
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e Line intensity .J;; is spectral intensity integrated over angle = cos#é
and over absorption (emission) line profile ®*
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e Rate equation for electron concentration
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e Equation of radiative transfer (written in planar 1D geometry)
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e Spectral emission and absorption coefficients j, and %, are written for
kl transition (frequency vy))
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e Spectral emission and absorption coefficients for given v - sum of lines
and of continuum



Radiative transfer simulation

e Populations may be solved without radiative transfer in 2 limiting cases

— optical thin populations - I, =0
— LTE populations - I, = S, - blackbody radiation

e Radiative transfer - long studied in astrophysics - often diffusive transfer
e Laboratory plasmas differ from astrophysical plasmas

— Often optically thin for continuum emission (free-free and free-
bound transitions)

— Many bound-bound are collisionally dominated (radiative transfer
does not influence populations)

— Often only several intense lines must be taken into account when
radiative transfer is solved
— density effects

— inhomogeneity and expansion (macroscopic Doppler shift)
e Applied methods

— ETLA (equivalent two-level atom) - static, homogeneous plasmas,
convergence problems

— Escape factors - derived for large optical depths, no macroscopic
Doppler shift

— Sobolev escape factors - macroscopic Doppler shift included, but
only Doppler line profile possible

— Linearization with respect to radiation fields - linear system of
dimension KK (number of levels) x N (number of spatial points),
fine for a few levels

— Peyrusse (1992) method - breaks iteration into two steps - iterates
populations including radiative transfer only inside one cell and and
then solves radiative transfer in space with given populations



Atomic physics models

e Various types of models constructed according to the purpose
o K-shell spectroscopy (detailed for H-, He- and Li- like ions)

e X-ray lasers (collisionally excited - Ne-like, Ni-like ions)

e models for high-Z ions (e.g. UTA model)

e models including excitation states of all ionization states (low Z - ra-
diative energy transfer, diagnostics)

Code FLY - standard for K-shell spectroscopy

e developed by R.W. Lee, LLNL (R.W. Lee, J.T. Larsen, J.Q.S.R.T. 56,
535 - 556.

e Commercially available (200 US$) - successor of RATION

e Stationary and non-stationary homogeneous plasmas (Z = 3 — 26)
e Finite optical thickness included

e Suite of three codes

— FLY - populations of excitation states (only Doppler broadening -
overestimates optical thickness)

— FLYPAPER - visualization of FLY results, diagnostics (line ratios
etc.)

— FLYSPEC - spectrum synthesis (Stark broadening included for Ly-
lines, Ba-lines, He-like transitions to ground state, Li-like transition
to 2s and 2p states and corresponding recombination edges)



Atomic physics in K-shell postprocessor

Energetic levels
o fully stripped
e H-like — ground, excited 2 — 12

e He-like — ground 1s?, detailed excited 2 35, 2 3P, 2 1S, 2 'P,
lumped excited 3-9, autoionization 22|’ (6 levels)

e Li-like — ground 2s, detailed excited 2p, 3s, 3p, 3d,
lumped excited 4-9, autoionization 1s212]" (6 levels)

Limitation of number of excited states
e by input data

e by plasma density (ionization potential lowering)

Atomic transitions included

e Collisional ionization and three-body recombination
e Spontaneous radiative recombination

e Autoionization and dielectronic recombination

e Collisional excitation and deexcitation

e Spontaneous photo-deexcitation

e Photo-excitation and stimulated photo-deexcitation for optically thick
lines



Developed atomic physics postprocessor

e Postprocessor to 1D planar Lagrangian codes

e Bulk Doppler shift makes geometry acceptable even for relatively narrow
focal spots

e Atomic physics database developed for Aluminum
e Maxwellian electron distribution assumed

e Radiative transfer is solved together with populations only for potentially
optically thick lines

e Fully implicit differencing is used for time discretization

e Voigt line profiles previously used, now sophisticated profiles are imple-
mented - talk by L. Kocbach

e Core saturation method used for line transfer

Suite of 3 codes

e PLANPOP - calculates populations including impact of line transfer
e PLANSP - synthesis of spectra emitted from planar plasma

e SIDESP - synthesis of spectra emitted in lateral directions (suited for
dot target experiments)



The energy emitted in

He-o and intercombination

lines versus pulse separation A
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Calculated K-shell spectra
pulse separation A =0 ns, A =2 ns
(He-a, Ly-a, He-( lines)
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Experimental and simulation spectra near He-a line
(pulse separation A = 2 ns)

240

= —— Simulation

= ---- Experiment

o) \

~ 1

30} \ .
> | AT = 2 ns

g 20t ]
4o

>

Q)

<

o 107 1
O

E N\ -~ i
- \ r V/\N / NP
3 0 bt ‘ ‘ \Fv\/\/M /‘JLf .
s 0.770 0.775 0.780 0.785 0.790
0

Wavelength [nm]

Experimental parameters

A =790 nm TEWHM — 100 fs
Lnain = 2.3 x 10'% W/cm? Lyvepuise = 10" W /cm?
Al target Normally incident laser

Focal diameter — 30 pum Contrast > 10°% in intensity



Temporal profiles of He-a emission

(for various pulse separations A)
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Scheme of dot target experiment

laser
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Scheme of side view spectra calculation
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Emission integrated along rays

X-ray refraction assumed negligible

Ray positions selected dynamically (associated with Lagrangian
grid)

Time integration — emission interpolated onto a static grid



intensity [photons/4tt A]

Spectra measured at angle 12.5° from the target
plane
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Spatially resolved time integrated synthetic spectra
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Calculations with precision line profiles

Examples of calculated emitted He-a and Ly-a lines, using pre-
cision emission line profiles (see contribution by L. Kocbach et al.

http:/ /www-troja.fjfi.cvut.cz/k412 /en /events/pps01 /docs/kocbach.pdf)
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Conclusions

e Developed post-processor used for interpretation of short-pulse laser-
target experiment

e Precision line shapes now being introduced - see contribution by L. Kocbach
et al. - http://www-troja.fifi.cvut.cz/k412/en/events/pps01/docs/kocbach.pdf

e Standard FLY code used for calculations of laser gain in capillary dis-
charge

e Detailed kinetics code used for spectra of capillary discharge
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