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Aim of the presentation

� Introduction to line emission simulations

� Presentation of suite of codes developed

� Examples of results

Applications of line emission

� Diagnostics applications

{ Measurements of plasma density, electron temperature

{ Line ratios

{ Line forms

� Plasma as intense source of quasimonochromatic emission

{ ultrashort x-ray pulses for pulse-probe material diagnostics

{ x-ray source for biologic imaging and for lithography



Plasma dynamics simulations

� Magnetohydrodynamics codes - 1D, 2D

� Hydrodynamics codes - 1D, 2D, (3D)

� plasma density, electron and ion temperature, average ion charge

� Fokker-Planck codes (+ electron distribution)

� (PIC codes - usually only low density and details)

� Atomic physics model - mostly not with spectroscopic precision

� Average atom approximation widely used, simpli�ed collision-radiative
model and other approaches also possible

� Radiation transport - typically multigroup di�usion - continuum, groups
of lines for high Z

Atomic physics post-processors

� Based on assumption - line emission does not inuence energy balance
signi�cantly



Post-processor problem formulation

� Ionization and excitation states populations coupled with radiative trans-
fer

� Rate equations for populations
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� Line intensity Jkl is spectral intensity integrated over angle � = cos �
and over absorption (emission) line pro�le �kl
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� Rate equation for electron concentration
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� Equation of radiative transfer (written in planar 1D geometry)
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� Spectral emission and absorption coe�cients j� and k� are written for
kl transition (frequency �kl)
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gk is degeneracy of the level k

� Spectral emission and absorption coe�cients for given � - sum of lines
and of continuum



Radiative transfer simulation

� Populations may be solved without radiative transfer in 2 limiting cases

{ optical thin populations - I� = 0

{ LTE populations - I� = S� - blackbody radiation

� Radiative transfer - long studied in astrophysics - often di�usive transfer

� Laboratory plasmas di�er from astrophysical plasmas

{ Often optically thin for continuum emission (free-free and free-
bound transitions)

{ Many bound-bound are collisionally dominated (radiative transfer
does not inuence populations)

{ Often only several intense lines must be taken into account when
radiative transfer is solved

{ density e�ects

{ inhomogeneity and expansion (macroscopic Doppler shift)

� Applied methods

{ ETLA (equivalent two-level atom) - static, homogeneous plasmas,
convergence problems

{ Escape factors - derived for large optical depths, no macroscopic
Doppler shift

{ Sobolev escape factors - macroscopic Doppler shift included, but
only Doppler line pro�le possible

{ Linearization with respect to radiation �elds - linear system of
dimension K (number of levels) � N (number of spatial points),
�ne for a few levels

{ Peyrusse (1992) method - breaks iteration into two steps - iterates
populations including radiative transfer only inside one cell and and
then solves radiative transfer in space with given populations



Atomic physics models

� Various types of models constructed according to the purpose

� K-shell spectroscopy (detailed for H-, He- and Li- like ions)

� X-ray lasers (collisionally excited - Ne-like, Ni-like ions)

� models for high-Z ions (e.g. UTA model)

� models including excitation states of all ionization states (low Z - ra-
diative energy transfer, diagnostics)

Code FLY - standard for K-shell spectroscopy

� developed by R.W. Lee, LLNL (R.W. Lee, J.T. Larsen, J.Q.S.R.T. 56,
535 - 556.

� Commercially available (200 US$) - successor of RATION

� Stationary and non-stationary homogeneous plasmas (Z = 3 { 26)

� Finite optical thickness included

� Suite of three codes

{ FLY - populations of excitation states (only Doppler broadening -
overestimates optical thickness)

{ FLYPAPER - visualization of FLY results, diagnostics (line ratios
etc.)

{ FLYSPEC - spectrum synthesis (Stark broadening included for Ly-
lines, Ba-lines, He-like transitions to ground state, Li-like transition
to 2s and 2p states and corresponding recombination edges)



Atomic physics in K-shell postprocessor

Energetic levels

� fully stripped

� H-like { ground, excited 2 { 12

� He-like { ground 1s2, detailed excited 2 3S, 2 3P, 2 1S, 2 1P,
lumped excited 3-9, autoionization 2l2l' (6 levels)

� Li-like { ground 2s, detailed excited 2p, 3s, 3p, 3d,
lumped excited 4-9, autoionization 1s2l2l' (6 levels)

Limitation of number of excited states

� by input data

� by plasma density (ionization potential lowering)

Atomic transitions included

� Collisional ionization and three-body recombination

� Spontaneous radiative recombination

� Autoionization and dielectronic recombination

� Collisional excitation and deexcitation

� Spontaneous photo-deexcitation

� Photo-excitation and stimulated photo-deexcitation for optically thick
lines



Developed atomic physics postprocessor

� Postprocessor to 1D planar Lagrangian codes

� Bulk Doppler shift makes geometry acceptable even for relatively narrow
focal spots

� Atomic physics database developed for Aluminum

� Maxwellian electron distribution assumed

� Radiative transfer is solved together with populations only for potentially
optically thick lines

� Fully implicit di�erencing is used for time discretization

� Voigt line pro�les previously used, now sophisticated pro�les are imple-
mented - talk by L. Kocbach

� Core saturation method used for line transfer

Suite of 3 codes

� PLANPOP { calculates populations including impact of line transfer

� PLANSP { synthesis of spectra emitted from planar plasma

� SIDESP { synthesis of spectra emitted in lateral directions (suited for
dot target experiments)



The energy emitted in He-� and intercombination

lines versus pulse separation �

Parameters

� = 790 nm �FWHM = 100 fs
Imain = 2:3� 10

16 W/cm2 Iprepulse = 10
15 W/cm2

Al target, normal incidence observation angle 45�



Calculated K-shell spectra

pulse separation � = 0 ns, � = 2 ns
(He-�, Ly-�, He-� lines)

Simulation parameters

� = 790 nm �FWHM = 100 fs

Imain = 2:3� 10
16 W/cm2 Iprepulse = 10

15 W/cm2

Al target Normally incident laser
K-� lines not included in model



Experimental and simulation spectra near He-� line

(pulse separation � = 2 ns)

Experimental parameters

� = 790 nm �FWHM = 100 fs
Imain = 2:3� 10

16 W/cm2 Iprepulse = 10
15 W/cm2

Al target Normally incident laser

Focal diameter { 30 �m Contrast > 10
6 in intensity



Temporal pro�les of He-� emission

(for various pulse separations �)

Time measured from main pulse maximum

Simulation parameters

� = 790 nm �FWHM = 100 fs

Imain = 2:3� 10
16 W/cm2 Iprepulse = 10

15 W/cm2

Al target Normally incident laser



Scheme of dot target experiment
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Scheme of side view spectra calculation 
 
 
 
 
 

 
   target 
 
 
 
- Emission integrated along rays 
- X-ray refraction assumed negligible 
- Ray positions selected dynamically (associated with Lagrangian 

grid) 
- Time integration – emission interpolated onto a static grid 
 
 



Spectra measured at angle 12:5� from the target

plane
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Spatially resolved time integrated synthetic spectra
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Calculations with precision line pro�les

Examples of calculated emitted He-� and Ly-� lines, using pre-
cision emission line pro�les (see contribution by L. Kocbach et al.

http://www-troja.fj�.cvut.cz/k412/en/events/pps01/docs/kocbach.pdf)



Conclusions

� Developed post-processor used for interpretation of short-pulse laser-
target experiment

� Precision line shapes now being introduced - see contribution by L. Kocbach
et al. - http://www-troja.fj�.cvut.cz/k412/en/events/pps01/docs/kocbach.pdf

� Standard FLY code used for calculations of laser gain in capillary dis-
charge

� Detailed kinetics code used for spectra of capillary discharge
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