Laser interactions with low-density plastic foams

J. Limpouch

Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 11519 Prague 1, Czech Republic *and* Institute of Physics, Academy of Sciences CR, Na Slovance 2, 18221 Prague 8 *in collaboration with*

N.N. Demchenko³, S.Yu. Gus'kov³, A.I. Gromov³, M. Kálal¹,
A. Kasperczuk⁴, V.N. Kondrashov⁵, E. Krouský², K. Mašek²,
M. Pfeifer², P. Pisarczyk⁶, T. Pisarczyk⁴, K. Rohlena², V.B. Rozanov³,
M. Šiňor¹, J. Ullschmied²

¹Czech Technical University, Prague ²Institute of Physics, AS CR, Prague ³Lebedev Physical Institute, Moscow ⁴IPPLM Warsaw, Poland ⁵TRINITI, Troitsk, Russia ⁶Warsaw University of Technology partially supported by INTAS, project INTAS-01-0572 IAEA, project 11655/RBF Czech Ministry Educaion LN00A100 EC contract HPRI-CT-1999-0053 (project PALS 013)

Outline

- Motivation and aim
- Experimental results
 - X-ray streak measurement of thermal transport in foam
 - 3-frame optical interferometry to measure foil acceleration
 - Preliminary experiment on shock break-through (opt.streak)
- 2D hydrodynamic simulations of experiments
- Analytical model of experiments
- Comparison of experiments, simulation and theory
 - Velocity of accelerated foil
 - Hydrothermal wave transit time though foam
- Conclusions and future plans

Motivation

- Low-density foam layers (mostly overdense plastic foams) have the potential of target design improvement for ICF and other experiments
- Laser imprint may be smoothed out in a relatively thick hot low-density outer layer of target – one approach relies on transport of x-rays generated in a thin high-Z outer layer, while the other approach prefers highly efficient laser absorption in the foam
- Density tailoring of sandwich target including foam layer with distant laser prepulse may suppress RT instability
- Foams are used in EOS experiment to increase pressure due to impedance mismatch on foam-solid interface
- Foam materials are also important in astrophysics dedicated experiments

Foam materials

- Low density materials must be inhomogeneous
- If you want 1% of solid density, you have 1% of solid, and 99% of vacuum
- Here we have basically cubic pores, but filamentary structure also possible
- When heated, pore walls expand (fast homogenization stage)
- After collision of mass fluxes (slow homogenization stage)

Aim

- More information is needed about laser-foam interaction and about energy transport in foam layers for successful design of ICF targets including foam layers
- Laser absorption and energy transport in the foam material with large pores ($D_p > 10 \ \mu m$) is studied here laser pulse shorter than slow homogenization stage
- Sufficient efficiency of thin foil acceleration by the pressure of heated foam matter is demonstrated
- Substantial smoothing of laser inhomogeneities is searched for
- Comparison of experimental results with numerical simulations and analytical model is important for progress in understanding laser-foam interactions

X-ray streak records of lateral slit image

Interaction of 400 ps iodine laser (λ =1.32 µm) pulse of energy 92 J and radius 150 µm with 400 µm thick polystyrene foam of density $\rho \approx 9$ mg/cm³ and pore diameter D_p $\approx 50 - 70$ µm, 2 µm thick AI foil is placed at the target rear side.

- Images above the sensitivity limit of the streak could be registered only for foams with the largest pore diameter
- Laser penetration depth can be estimated from the immediately heated layer thickness ~ 130 μ m
- Heat wave propagates later with velocity 1.4 x 10⁷ cm/s
- No x-ray emission near the target rear side is observed

Three-frame optical interferometry

Sequence of 3 interferograms recorded in one shot in instants 1, 4 and 7 ns after the main 400 ps FWHM laser pulse maximum. Laser wavelength 1.32 μ m and beam radius 150 μ m on the polystyrene foam of $\rho \sim 9$ mg/cm³, D_p $\sim 50 - 70$ μ m, 400 μ m thick with 2 μ m thick AI foil at its rear side. Laser energy 173 J. Parasitic effects of the target holder are denoted in the left picture.

- No sign of the target rear side (foil) expansion observed
- Smooth shape of accelerated foil (~ spherical shock wave)
- Rear side motion starts at about 3 ns after laser pulse
- Point P moves with velocity 8x10⁶ cm/s between 4 and 7 ns after laser

Three-frame optical interferometry (PVA foam)

Sequence of 3 interferograms recorded in one shot in instants 1, 4 and 7 ns after the main 400 ps FWHM laser pulse maximum. Laser wavelength 1.32 μ m and beam radius 150 μ m on the PVA (polyvinylalcohol) foam of $\rho \sim 5 \text{ mg/cm}^3$, $D_p \sim 5 \mu$ m, 100 μ m thick with 0.8 μ m thick Al foil at its rear side. Laser energy 238 J. Parasitic effects of the target holder are denoted in the left picture.

- Target rear side (foil) expansion observed
- Smooth shape of accelerated foil
- Rear side motion starts during laser pulse
- Point P moves with velocity 1.4×10^7 cm/s between 4 and 7 ns

Measured evolution of point P position

Preliminary optical streak record of self-emission from target rear side

Left – foam 700 μ m + 5 μ m Al foil

Right - 5 μm Al foil only

5 ns/image - time grows downwards, spatial scale 1.5 mm/image, fiducial – left upper corner, 3rd harmonics of iodine laser, energy 240 J, laser spot radius 200 μ m

2D hydrodynamic simulations

- 2D Langangian hydrocode "ATLANT-HE" used
- 1 fluid 2 temperature model of plasma with the flux-limited Spitzer's heat conductivities for electrons and ions
- Advanced treatment of laser propagation and absorption
- Fast electron generation and transport included
- Simulations performed in cylindrical geometry
- Fine structure of the foam is not taken into account, foam approximated as uniform low density medium
- Fast homogenization stage filling of the pores lasts about 50-100 ps, i.e less than laser pulse
- Slow homogenization stage density smoothing up to several ns ⇒ speed of hydrothermal wave may be overestimated

Results of 2D hydrodynamic simulations

Density (in g/cm³) and electron temperature (in eV) profiles at times 1, 4 and 7 ns after laser pulse maximum calculated numerically for polysty-rene foam 400 μ m thick with 2 μ m thick Al foil and laser energy 173 J.

Analytical model

- Does not take into account fine structure of the foam
- Spherical hydrothermal wave reaches rear side of the the foam in time t_f 5/2

$$t_{f} \approx \frac{\Delta_{f}^{5/2}}{\left[\frac{3}{2}\left(\frac{5}{3}\right)^{2} \frac{(\gamma-1)E_{ab}}{\pi \rho_{f}}\right]^{1/2}}$$

Initial pressure on the foil

Foil maximum velocity

$$\begin{split} P_{0} &= P_{ht} \left(t = t_{f} \right) \approx \frac{\left(\gamma - 1 \right) E_{ab}}{\pi \left(\Delta_{f} + R_{L} \right)^{2} \Delta_{f}} \end{split}$$

$$V_{\max} = \frac{c_0}{\gamma} \cdot \frac{\rho_f \cdot \Delta_f}{\rho_s \cdot \Delta_s}$$

where $c_0 = (\gamma P_0 / \rho_f)^{1/2}$

Comparison of experiment, simulations and analytical theory

Laser energy	Target	V _{exp} (cm/s)	V _{simul} (cm/s)	V _{max} (cm/s)
92 J	(CH) _n	6.0×10^{6}	4.9×10 ⁶	4.8×10 ⁶
173 J	(CH) _n	8.0×10 ⁶	8.2×10 ⁶	6.7×10 ⁶
238 J	(CH) _n		1.1×10^{7}	8.2×10 ⁶
238 J	PVA	1.4×10^{7}	3.5×10 ⁷	1.32×10^{7}

- Generally good agreement in foil velocities
- Velocity in simulations is overestimated for the case of PVA that is heated up to 800 eV in simulations and foil expansion is faster than in experiment
- Hydrodynamic efficiencies (foil kinetic energy/absorbed laser energy) in range 12 – 14%
- Smooth shape of accelerated region of the foil

Delay in hydrothermal wave propagation

- The hydrothermal wave arrival on the rear boundary is approximately the same in simulations and in theory
- Experimental time of arrival is by about 2 ns greater for 400 μm thick foam layer
- Delay may influence laser imprint mitigation
- Delay may be explained be foam homogenization
- Fast homogenization stage needs $t_s \sim (D_p b)/V_s$ (~100 ps)
- Final homogenization stage controlled by speed of viscous processes (broadening of shock wavefront)
- Time t_h is about 2 ns for T = 1 keV, $D_p = 50 \ \mu\text{m},$ $\rho = 10 \ \text{mg/cm}^3$ $t_h = \frac{\begin{pmatrix} D_p - b \end{pmatrix}^2}{\lambda V} \approx 10^{-9} \times \frac{p \ f}{T^{3/2}}$

Conclusions

- Depth of laser absorption region and speed of heat wave in foam measured by x-ray streak
- Foil acceleration observed by 3-frame interferometry
- Preliminary measurement of shock wave arrival
- 2D hydrodynamic simulations and analytical model applied, but foam fine structure not taken into account
- Good efficiency of foil acceleration found
- Smooth profile of accelerated foil boundary
- Agreement between theory and experiment in accelerated foil velocities
- Increased experimental delay in hydrothermal wave transit explained by foam homogenization process
- Delay may influence laser imprint mitigation

Plans for future

- Next experiment on PALS laser November 2004
- Comparison between foams with submicron and large pores will be performed
- Shock wave arrival on the foam rear side for 1ω
- Laser reflection to focusing optics will be measured
- Foams containing a medium Z element in order to enhance x-ray emission for x-ray streak measurements will be also used
- High resolution line x-ray spectra of medium Z element in foam will be recorded

Thank you for attention

Preliminary optical streak record of self-emission from target rear side

Left – foam 700 μ m + 5 μ m Al foil

Right - 5 μ m Al foil only

5 ns/image - time grows downwards, spatial scale 1.5 mm/image, fiducial – left upper corner, 3rd harmonics of iodine laser, energy - 75 J, laser spot radius 150 μ m